Processing math: 100%

kubische Gleichung

Bewertung: 5 / 5

Stern aktivStern aktivStern aktivStern aktivStern aktiv
 

kubische Gleichung

Kubische Gleichung oder Gleichung dritten Grades ist eine Gleichung, die sich in dieser Form gegeben ist der in diese Form umwandeln lässt:
ax³ + bx³ + cx +d = 0 (mit a ungleich 0, wäre a = 0, so erhält man eine quadratische Gleichung)
Gleichungen diesen oder höheren Grades werden meist udrch numerische Verfahren hinreichend genau gelöst. Es gibt aber auch eine exakte Lösungsvorschrift, letztlich eine Lösungsformel. Entwickelt wurde die allgemeine Lösungsformel von Cardano (oder Tartigla).
Eine ausführliche Herleitung der Lösungsformeln findet sich --> hier <--
Deutlich kürzer - aber eben ohne Begründungen wegen des warum:
ax³ + bx³ + cx +d = 0 wird durch a dividiert es wird y:=x+b3a gesetzt
==> y³ + 3py + 2q = 0 mit 3p=3acb23a2  und  2q=2b327a3bc3a2+da
Nun wird die Diskriminante D = q² + p³ untersucht.
Wenn gilt D > 0 ==> Die Gleichung hat eine relle und zwei komplexe Lösungen.
Wenn gilt D < 0 ==> Die Gleichung hat drei verschiedene relle Lösungen.
Wenn gilt D = 0 ==> Die Gleichung hat nur "eine Lösung" y1 = y2 = y3 = 0 (für p=q=0) bzw. "zwei Lösungen".
Die Lösungen heißen:
y1 = u + v
y2 = f1u + f2v
y3 = f2u + f1v
u=3q+D v=3qD
f1,2=0,5(1±3i)(i=1) imaginäre Einheit


Beispiel: 0 = x³ + 3x² - 25x - 75
==>
a = 1      b = 3      c = -25      d = -75
==>
p = -9.33333333      q = -24      D = -237.03703704
0= y³ - 28y -48
==> Wegen D < 0  drei relle Lösungen
(z1 = -q + Wurzel(D) = 24 + 15.39600718 i und z2 = -q - Wurzel(D) = 24 - 15.39600718 i)

u=3z1  =3+0.57735027i    v=3z2  =30.57735027i

y1 = 6      y2 = -4     y3 = -2

x1 = 5      x2 = -5     x3 = -3



noch mehr Interessantes im großen -->Mathelexikon<--