Serie 59
Beitragsseiten
Aufgabe 11
707. Wertungsaufgabe
Hello, ¡Hola, 你好, Hallo, Olá, Bonjour, Ciao, привет, Helló, Guten Tag
deu
Opa hatte eine Konstruktion mitgebracht, die wie drei Monde aussah, zumindest dann, wenn man sich das zweite Bild anschaut.
„Wie hast du das konstruiert?“, fragt Bernd.
„Hier könnt ihr die Hinweise lesen“, erwiderte der Opa.
Zu Beginn einen Kreis mit dem Mittelpunkt M und einem Radius von 4 cm zeichnen. A, B, C, D, E und F bilden ein gleichseitiges Sechseck. Da kann man schon mal die roten Kreisbögen nutzen. 3 sind noch zu sehen, die anderen 3 sind entfernt. Jetzt werden die Strecken wie im Bild ersichtlich eingezeichnet.
Die grünen Kurven sind Halbkreise mit den Mittelpunkten H, G bzw. I.
Wie lang sind die grünen und roten Bögen zusammen? 6 blaue Punkte
In dem zweiten Bild erkennt man einen grünen, einen roten und einen blauen Mond. Deswegen nannte der Opa auch das Bild so. Die Punkte X, Y und Z bilden ein Dreieck aus Bögen. Wie groß sind Umfang und Flächeninhalt dieses besonderen Dreiecks? 6 rote Punkte
Termin der Abgabe 07.04.2022. Срок сдачи 07.04.2022. Ultimo termine di scadenza per l´invio è il 07.04.2022. Deadline for solution is the 7th. April 2022. Date limite pour la solution 07.04.2022. Soluciones hasta el 07.04.2022. Beadási határidő 2022.04.07. 截止日期: 2022.04.07 – 请用徳语或英语回答
chin
第707题
爷爷带来了一张图片。这张图看起来就像三个月牙,至少在人们看到第二张图片的时候。
“你是怎么画出来的?”贝恩德问。
“你们可以在这里读一下说明。”爷爷回答道。
先画一个以点M为圆心、半径为4厘米的圆。由A、B、C、D、E、F构成一个等边六边形。
人们在这儿使用了红色的圆弧。现在还可以看到 3 个,另外 3 个已被擦除。 现在把这些线画出来,就像图中所标注的那样。
绿色的弧线是分别以点H、G和I为圆心的半圆。
那么绿色弧线和红线弧线一共多长? 6个蓝点
在第二张图中人们能看到绿色、红色和蓝色的月牙。所以爷爷以此来命名这张图。点X、Y和Z形成一个弧形的三角形。
那么这个特别的三角形的周长和面积是多少? 6个红点
截止日期: 2022.04.07 – 请用徳语或英语回答
russ
Дедушка привёз конструкцию, похожую на три луны, по крайней мере, если посмотреть на вторую картинку.
«Как ты это построил?» — спрашивает Бернд.
«Здесь вы можете прочитать указания», — ответил дедушка.
Начните с рисования круга с центром М и радиусом 4 см. A, B, C, D, E и F образуют равносторонний шестиугольник. При этом можно использовать красные круговые дуги. 3 дуги всё ещё видны, остальные 3 удалены. Теперь рисуют отрезки, как показано на рисунке.
Зелёные кривые — это полукруги с центрами в точках H, G и I соответственно.
Какова длина зелёных и красных дуг вместе взятыми? 6 синих очков
На второй картинке вы видите зелёную, красную и синюю луну. Вот почему дедушка так назвал картину. Точки X, Y и Z образуют треугольник из дуг. Каковы периметр и площадь этого особенного треугольника? 6 красных очков
hun
Nagyapa hozott egy szerkesztést, ami úgy néz ki, mint három hold, legalábbis, ha a második ábrát megnézzük.
„Hogyan szerkesztetted meg? „– kérdezte Bernd.
„Itt olvashatjátok az utasításokat hozzá.” – válaszolta Nagyapa.
Először egy 4 cm átmérőjű kört kell az M középpont köré rajzolni. Az A, B, C, D és F egy egyenlő oldalú hatszöget képeznek. Ekkor lehet a piros köríveket használni. Ezekből 3 látható, a másik 3-t már eltávolították. Most rajzoljuk be a szakaszokat a képen látható módon.
A zöld görbék félkörívek H, G és I középpontok körül.
Milyen hosszúak a zöld és piros ívek együttesen? 6 kék pont
A második ábrán felismerhető egy zöld, egy piros és egy kék hold. Ezért nevezte így a képet nagyapa. Az X, Y és Z pont háromszöget alkotnak az ívekből. Mekkora a kerülete és a területe ennek a különleges háromszögnek? 6 piros pont
frz
Grand-père avait apporté une construction qui ressemblait à trois lunes, du moins quand on regarde la deuxième photo.
« Comment as-tu construit cela ? », demande Bernd. "Tu peux lire les instructions ici," répondit grand-père.
Commencez par tracer un cercle de centre M et de rayon 4 cm. A, B, C, D, E et F forment un hexagone équilatéral. Vous pouvez y utiliser les arcs de cercle rouges. 3 sont encore visibles, les 3 autres ont été supprimées. Maintenant, les lignes sont dessinées comme indiqué sur l'image.
Les courbes vertes sont des demi-cercles centrés respectivement sur H, G et I.
Combien de temps les arcs vert et rouge sont-ils ensemble ? 6 points bleus
Sur la deuxième image, vous pouvez voir une lune verte, rouge et bleue. C'est pourquoi grand-père a appelé la photo comme ça. Les points X, Y et Z forment un triangle d'arcs. Quels sont le périmètre et l'aire de ce triangle particulier ? 6 points rouges
esp
El abuelo había traído una construcción que parecía tres lunas, al menos si se mira la segunda foto.
"¿Cómo lo has construido?", pregunta Bernd.
"Aquí puedes leer las pistas", respondió el abuelo.
Para empezar, dibuja un círculo con centro M y radio de 4 cm. A, B, C, D, E y F forman un hexágono equilátero. Puedes usar los arcos rojos. 3 siguen siendo visibles, los otros 3 se han eliminado. Ahora las líneas se dibujan como se muestra en la imagen.
Las curvas verdes son semicírculos con los centros H, G e I respectivamente.
¿Qué longitud tienen los arcos verde y rojo juntos? 6 puntos azules.
En la segunda imagen se puede ver una luna verde, una roja y una azul. Por eso el abuelo llamó así a la foto. Los puntos X, Y y Z forman un triángulo de arcos. ¿Cuál es el perímetro y el área de este triángulo particular? 6 puntos rojos
en
Grandpa had brought a construction that looked like three moons, at least if you look at the second picture.
"How did you construct that?" asked Bernd.
"Here you can read the clues," replied the grandpa.
To begin with, draw a circle with centre M and a radius of 4 cm. A, B, C, D, E and F form an equilateral hexagon. You can use the red arcs. 3 are still visible, the other 3 are removed. Now the lines are drawn in as shown in the picture.
The green curves are semicircles with the centres H, G and I respectively.
How long are the green and red arcs together? 6 blue points
In the second picture you can see a green, a red and a blue moon. That's why grandpa called the picture that way. The points X, Y and Z form a triangle of arcs. What is the perimeter and area of this particular triangle?
6 red points
Deadline for solution is the 7th. April 2022.
it
707
Il nonno aveva portato una costruzione che sembrava essere composta da tre lune. Questo si vede bene nel
secondo disegno. “Come l’hai costruito?”, chiedeva Bernd. “Ve l’ho descritto in questo manuale”, replicava il
nonno.
Si inizia disegnando un cerchio col raggio 4 cm intorno al centro M.
A, B, C, D, E e F formano un’esagono equilatero. Per trovare questi punti si possono usare gli archi rossi, dei cui
si vedono ancora tre, mentre gli altri tre sono stati tolti. Adesso bisogna disegnare I segmenti che si vedono
nell’ imagine. Gli archi verdi sono semicerchi con I centri H, G e I. Qual’ è la somma di tutti gli archi, verdi più
rossi? punti blu
Nel secondo disegno si vedono una luna verde, una rossa ed una blu. I Punti X, Y e Z formano un triangolo
curvo. Quale sono l’area e la circonferenza di questo triangolo talmente eccezionale? 6 punti rossi
Lösung/solution/soluzione/résultat/Решение:
Musterlösung von Reinhold M. Danke
beim gleichseitigen Sechseck stimmen die Seitenlänge und der
Umkreisradius, hier r = 4 [cm], überein - Zerlegung in die sechs
gleichseitigen Dreiecke AMF, BMA, CMB, DMC, EMD und FME -, und die
Innenwinkel betragen jeweils 120°. Damit haben also die roten Bögen die
Radien
rrot = r = 4 [cm]
und die Mittelpunktswinkel
wrot = 120°
und folglich die Bogenlängen
brot = 2 Pi rrot wrot/360° = 8/3 Pi [cm].
Weiter haben die gleichseitigen Dreiecke AMF usw. mit der Seitenlänge r
= 4 [cm] die Höhen
h = 1/2 Wurzel(3) r = 2 Wurzel(3) [cm]
(bekannt bzw. Pythagoras), so dass die grünen Bögen die Radien
rgrün = h = 2 Wurzel(3) [cm]
und die Mittelpunktswinkel
wgrün = 180°
(Halbkreise) und folglich die Bogenlängen
bgrün = 2 Pi rgrün wgrün/360° = 2 Wurzel(3) Pi [cm]
haben. Damit beträgt die im ersten Teil gesuchte Gesamtlänge L der
jeweils drei roten und grünen Bögen
L = 3 (brot + bgrün) = (8 + 6 Wurzel(3)) Pi [cm],
d.h. ca. 57,7811 cm.
Im zweiten Teil nun wurde X = H, Y = G und Z = I gesetzt, so dass X, Y
und Z geradlinig verbunden ein gleichseitiges Dreieck mit der Seitenlänge
h = 2 Wurzel(3) [cm]
(s. oben) bilden - Zerlegung des gleichseitigen Dreiecks ACE in die vier
gleichseitigen Dreiecke AXZ, CYX, EZY und XYZ -, das den Flächeninhalt
AD = 1/4 Wurzel(3) h^2 = 3 Wurzel(3) [cm^2]
hat (bekannt bzw. Höhe über Pythagoras).
Weiter haben also die Kreisbögen XY, YZ und ZX als Teile der
ursprünglich grünen Bögen die Radien
rXYZ = rgrün = h = 2 Wurzel(3) [cm]
und die Mittelpunktswinkel
wXYZ = 60°
und folglich die Bogenlängen
bXYZ = 2 Pi rXYZ wXYZ/360° = 2/3 Wurzel(3) Pi [cm].
Damit beträgt der Umfang U des Bogendreiecks XYZ
U = 3 bXYZ = 2 Wurzel(3) Pi [cm],
d.h. ca. 10,8828 cm (was natürlich = bgrün ist).
Die Flächeninhalte AK der Kreissektoren XYZ (X Mittelpunkt, YZ Bogen)
usw. schließlich betragen
AK = Pi rXYZ^2 wXYZ/360° = 2 Pi [cm^2],
so dass der Flächeninhalt A des Bogendreiecks XYZ - in der Summe der
Flächeninhalte der drei Kreissektoren ist das geradlinige Dreieck
dreimal enthalten -
A = 3 AK - 2 AD = 6 (Pi - Wurzel(3)) [cm^2]
beträgt, d.h. ca. 8,4573 cm^2.