Serie 51
Beitragsseiten
Aufgabe 5
605. Wertungsaufgabe
„Ich habe noch viel mehr rote und blaue Würfel bekommen, Kantenlänge immer 1 cm. Ich nehme mir von jeder Farbe genau die gleiche Anzahl und baue daraus große Würfel“, sagte Lisa. „Verstehe“, erwiderte Mike. „Ist dann immer abwechselnd einer rot einer blau?“ „Nein, ich versuche, die Würfel so zu bauen, dass außen möglichst wenig blau sehen ist.“
Wie viel cm² der Oberfläche sind nach der Überlegung mindestens blau, wenn Lisa einen 2x2x2 bzw. 4x4x4-Würfel baut? (1 + 2 blaue Punkte)
Welche Ausmaße müsste ein solcher Würfel mindestens haben, so dass keine blauen Flächen zu sehen sind, oder gibt es einen solchen Würfel gar nicht. (3 rote Punkte)
Die Lösung des Symbolrätsels bringt zwei zusätzliche blaue Punkte, aber nur wenn reguläre Punkte eingebracht werden. Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, → gleiche Ziffer, verschiedene Symbole → verschiedene Ziffern. © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!
Termin der Abgabe 16.05.2019. Ultimo termine di scadenza per l´invio è il 16.05.2019. Deadline for solution is the 16th. May 2019. Date limite pour la solution 16.05.2019. Soluciones hasta el 16.05.2019. Beadási határidő 2019.05.16.
hun
„Kaptam egy csomó piros és kék kockát, mindegyiknek 1 cm az élhossza. Mindkét színű kockából ugyanannyit veszek és építek belőlük egy nagy kockát.” – mondta Lisa. „Értem” – felelte Mike. „Mindig váltakozva teszed a kéket és a pirosat?” „Nem, megpróbálom a kockát úgy építeni, hogy kívülről a lehető legkevesebb kék látszódjon.”
A felületnek hány cm2-e kék ezek után, ha Lisa egy 2x2x2 illetve egy 4x4x4 kockát épít? (1+2 kék pont)
Milyen méretűnek kell lennie a kockának, hogy egyáltalán ne látszódjon kék felület, vagy nem is létezik ilyen kocka? (3 piros pont)
A szimbólum rejtvény megoldásáért további két kék pontot kaphat, amennyiben a többi feladatért is szerzett pontot. A rejtvény megfejtésére érvényes: minden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket. ©HRGauern[at]@t-online.de
fr
"J'ai beaucoup plus de cubes rouges et bleus, la longueur du bord est toujours de 1 cm. Je prends exactement le même nombre de chaque couleur pour en créer un gros cube ", a déclaré Lisa. "Je comprends," répondit Mike. "Est-ce qu'il y a toujours un rouge et un bleu en alternance ?" Non, j'essaie de construire les cubes de manière à ce que à l'extérieur il y aura aussi peu de bleu que possible. "
Combien de cm² de la surface sont au moins bleus, prise en compte, que Lisa construit un cube 2x2x2 ou 4x4x4? (1 + 2 points bleus)
Quelles sont les dimensions d'un tel cube, de sorte qu'aucune zone bleue ne soit visible, ou existe-t-il un tel cube? (3 points rouges)
La solution de l'énigme apporte deux points bleus supplémentaires, mais seulement si des points réguliers ont été obtenus. Règle pour l’énigme:Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. ©HRGauern[at]@t-online.de
sp
„Me han dado muchos cubos rojos y azules más, siempre los lados de una longitud de 1 cm. Cojo de cada color la misma cantidad y de aquellos construyo cubos grandes“, dijo Lisa.
„Entiendo“, repuso Mike. „Entonces ¿siempre se turnan rojo y azul?“ — „No, trato de construirlo así que de fuera se ve lo menos azul posible.“
Según esta consideración, ¿cuántos cm² de la área son por lo menos azules, en caso de que Lisa construya un cubo de 2x2x2 o de 4x4x4? (1 + 2 puntos azules)
¿A cuáles dimensiones se tendría que extender un cubo para que no se vean ningunas superficies azules - o es que no hay un cubo así? (3 puntos rojos)
Por la solución de rompecabeza de símbolos se recibe dos puntos azules adicionales si se ha ganado los puntos regulares antes. Para el rompecabeza aplica lo siguiente: Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras. ©HRGauern[at]@t-online.de
en
“I got a lot more red and blue cubes, side length always 1cm. I’ll take exactly the same number of cubes of each colour and combine them into big cubes”, Lisa said.
“I see”, Mike replied. “Will you alternately use red and blue cubes?”
“No, I’ll try to create the big cubes in a way that there are as little as possible blue cubes at the outside.”
How many cm² of the surface will at least have to be blue when Lisa creates a 2x2x2 cube and when she makes a 3x3x3 cube? - 1 + 2 blue points
What size would a cube have to be that doesn’t have any blue cubes in its surface, or does such a cube not exist? - 3 red points
Solving the picture-puzzle will get you two extra blue points, provided you also got points doing the regular maths problem. The rule for each picture puzzle is: Each icon represents one digit, same icons, same digits, different icons, different digits. ©HRGauern[at]@t-online.de
it
“Ho ricevuto ancora più cubetti rossi e blu (lunghezza degli spigoli sempre 1 cm). Prendo da ogni colore la stessa quantità e ne costruisco cubi grandi.”, diceva Lisa. “Capisco”, rispose Mike. “Allora uno rosso e uno blu fanno sempre a turno?” – “No. Cerco di costruire I cubi nel modo che di fuori si vede il meno blu possible.”
Quanti cm² della superficie sono al minimo blu se Lisa fa nel modo che ha descritto per costruire un cubo di 2x2x2 ossia 4x4x4? (1 + 2 punti blu)
Quale misura dovrebbe avere un tale cubo perché non si veda nessuna parte blu nella superficie; o non esiste un tale cubo? (3 punti rossi)
La soluzione dell´indovinello simbolico apporta altri due punti blu, ma solo se si apportano punti regolari. Per l´indovinello vale: Ogni simbolo sta per una cifra, stessi simboli, stessa cifra, diversi simboli diverse cifre. ©HRGauern[at]@t-online.de
Lösung/solution/soluzione/résultat:
Musterlösung von Magdalene --> pdf <-- und Reinhold M., danke
ein Würfel hat 8 Ecken, 12 Kanten und 6 Seitenflächen.
Ein der Aufgabenstellung entsprechender nxnxn-Würfel, n >= 2, Kantenlänge eines Teilwürfels 1 cm, hat damit
E(n) = 8 Eckwürfel mit je 3 Außenflächen,
K(n) = 12 n - 3 * 8 = 12 (n - 2) Kantenwürfel, die keine Eckwürfel sind, mit je 2 Außenflächen,
I(n) = (n - 2)^3 Innenwürfel ohne Außenflächen und folglich
S(n) = n^3 - 8 - 12 (n - 2) - (n - 2)^3 = 6 (n - 2)^2 Seitenwürfel, die keine Kanten- oder Eckwürfel sind, mit je 1 Außenfläche.
Für n = 2 gilt
E(2) = 8 sowie
K(2) = I(2) = S(2) = 0,
d.h., die 2^3/2 = 4 blauen Würfel sind alle Eckwürfel mit insgesamt 4 * 3 = 12 Außenflächen, die zusammen einen Flächeninhalt von 12 * 1^2 = 12 cm^2 haben, so dass bei "blau1" also genau 12 cm^2 blau sind.
Für n = 4 gilt
E(4) = 8,
K(4) = 24,
I(4) = 8,
S(4) = 24.
Im im Sinne der Aufgabenstellung günstigsten Fall sind also von den 4^3/2 = 32 blauen Würfeln 8 die Innenwürfel ohne Außenfläche und die übrigen 24 alle Seitenwürfel mit insgesamt 24 Außenflächen, so dass also bei "blau2" mindestens 24 * 1^2 = 24 cm^2 der Oberfläche blau sind.
Für "rot" ist die kleinste Zahl n zu finden, für die
n^3 / 2 <= I(n) = (n - 2)^3
ist, d.h.
f(n) = n^3 - 12 n^2 + 24 n - 16 >= 0.
Durch Umformen erhalten wir
f(n) = ((n-1)^2 + 3) (n - 10) + 24,
also
f(n) >= 0 für n >= 10.
Weiter gilt
f(9) = -43.
Folglich ist ein von außen nur roter Würfel genau ab der Mindestgröße 10x10x10 möglich.
Das Radrätsel schreibe ich um zu
ABCD / AE = FD
- * +
GBD + H = GBI
= = =
FIJ - DF = FCH.
Damit folgt unmittelbar
J = 0, A = 1 (1. Spalte).
Mit
D + H = I (2. Zeile) und
10 + H = D + I, F = G + 1, F + B = C + 9 (3. Spalte)
folgt zunächst
D = 5 und I = H + 5, also 2 <= H <= 4 und 7 <= I <= 9.
Weiter folgt
H + F = 10, C + 6 = I (3. Zeile),
also
H = C + 1 > 2, und
H = 10 - F = 9 - G ≠ 4.
Damit folgt
H = 3, I = 8, F = 7, C = 2, G = 6
und es bleibt
E = 9, B = 4 (1. Zeile).
Die Lösung ist also zusammengefasst
1425 / 19 = 75
- * +
645 + 3 = 648
= = =
780 - 57 = 723.