Serie 53

Beitragsseiten

Aufgabe 2

626. Wertungsaufgabe

„Maria, du hast ja schon einige Buchstaben nach den Anleitungen von Dürer konstruiert. Die haben mir sehr gefallen. Deshalb habe ich eine andere Konstruktion von Albrecht Dürer mitgebracht – seine Konstruktion eines Fünfecks.“, sagte der Opa von Maria und Bernd.

626
Strecke AB zeichnen (a = 4cm)
Jetzt die blauen Kreise, die schneiden einander in den Punkten F und G. Damit entsteht die Gerade g.
Jetzt den grünen Kreis (Mittelpunkt F und r = a) zeichnen. Schnittpunkte des grünen Kreises mit den blauen Kreisen sind I bzw. J. Der obere Schnittpunkt des grünen Kreises und g heißt H. Nun werden die Geraden i – JH und f – IH gezeichnet.. Es entstehen die Punkte C und E, diese werden zu Mittelpunkten der roten Kreise (r=a) und man erhält noch Punkt D. Das Fünfeck ABCDE sieht regelmäßig aus. Wie groß wären Flächeninhalt und Umfang des Fünfecks, wenn es regelmäßig mit a = 4 cm wäre. 4 blaue Punkte
Ist ein so konstruiertes Fünfeck wirklich regelmäßig? Der Nachweis oder die Widerlegung der Regelmäßigkeit des Fünfeck nach Dürer bringt 6 rote Punkte. Die Lösung des Symbolrätsels bringt zwei zusätzliche blaue Punkte, aber nur wenn reguläre Punkte eingebracht werden. Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, → gleiche Ziffer, verschiedene Symbole → verschiedene Ziffern. © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

626 nusskn

Termin der Abgabe 09.01.2020. Ultimo termine di scadenza per l´invio è il 09.01.1920. Deadline for solution is the 9th. January 2019. Date limite pour la solution 09.01.2020. Soluciones hasta el 09.01.2020. Beadási határidő 2020.01.09.

hun

Mária, te már szerkesztettél pár betűt Dürer leírása alapján. Ezek nagyon tetszettek neked. Ezért hoztam egy másik szerkesztést Dürertől, az ötszöget. - mondta Mária és Bernd nagyapja.

626

Meghúzzuk az AB szakaszt, ami 4 cm. Most a kék körök következnek, melyek az F és G pontban metszik egymást. Ezzel létrejön a G egyenes. Most a zöld kört (középpontja F, r = a) szerkesztjük meg. A zöld kör metszéspontja a kék körükkel az I és J. A zöld kör felső metszéspontját és a g-t H-nak hívjuk. Most már csak az I szakasz – JH és IH – megszerkesztése van hátra. Ezzel kialakul a C és E pont, ezek lesznek a piros körök (r=a) középpontjai és megkapjuk a D pontot. Az ABCDE ötszög szabályosnak tűnik. Mekkora a kerülete és a felülete az ötszögnek, amennyiben a = 4 cm? 4 kék pont
Egy ilyen módon szerkesztett ötszög tényleg szabályos? A Dürer ötszög szabályosságának bizonyítása vagy megcáfolása 6 piros pontot ér.
A szimbólum rejtvény megoldásáért további két kék pontot kaphat, amennyiben a többi feladatért is szerzett pontot. A rejtvény megfejtésére érvényes: minden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket. ©HRGauern[at]@t-online.de

626 nusskn

fr

"Maria, tu as déjà construit quelques lettres selon les instructions de Dürer. Je les aimais beaucoup. C'est pourquoi j'ai apporté une autre construction d'Albrecht Dürer - sa construction d'un pentagone », a déclaré le grand-père de Maria et Bernd; distance AB (a = 4cm)

626
Maintenant, les cercles bleus se coupent aux points F et G. Cela crée la droite g.
Dessinez maintenant le cercle vert (point central F et r = a).
Les intersections du cercle vert avec les cercles bleus sont I et J. L'intersection supérieure du cercle vert et g est H.
Maintenant, les lignes droites i - JH et f - IH sont tracées. Les points C et E sont créés, qui deviennent le centre des cercles rouges (r = a) et on obtient le point D.
Le pentagone ABCDE semble régulier. Quelle serait la superficie et la circonférence du pentagone s'il était régulier avec a = 4 cm. 4 points bleus
Un pentagone ainsi construit est-il vraiment régulier? La preuve ou la réfutation de la régularité du pentagone selon Dürer apporte 6 points rouges.

La solution de l'énigme apporte deux points bleus supplémentaires, mais seulement si des points réguliers ont été obtenus. Règle pour l’énigme:Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. ©HRGauern[at]@t-online.de

626 nusskn

sp

„Maria, ya has creado varias letras bajo la dirección de Dürer. Me han gustado mucho. Por eso traje otra construcción de Albrecht Dürer: su construcción de un pentágono“, dijo el abuelo de Maria y Bernd. Trazar el segmento rectilíneo AB (a= 4 cm).

626

Después trazar los círculos azules que se cruzan uno al orto en los puntos F y G. Así resulta la línea recta g. Ahora, trazar el círculo verde  (punto central F y r=a). Los puntos de intersección del círculo verde con el círculo azul son I o sea J. La intersección del círculo verde y g se llama H. Ahora se traza las rectas i-JH y f - IH. Resultan los puntos C y E que se hacen puntos centrales de los círculos rojos (r=a) y luego se obtiene el punto D. El pentágono ABCDE se ve regular. ¿De qué tamaño serían área y perímetro, si regularmente siempre tiene a= 4cm? 4 puntos azules

De verdad, ¿un pentágono construida de tal manera es regular? La prueba o refutación de la regularidad del pentágono según Dürer trae 6 puntos rojos.

Por la solución de rompecabeza de símbolos se recibe dos puntos azules adicionales si se ha ganado los puntos regulares antes. Para el rompecabeza aplica lo siguiente: Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras. ©HRGauern[at]@t-online.de

626 nusskn

en

”Maria, you’ve already designed some letters after Albrecht Dürer’s instruction. I liked those very much. So I brought another design of Albrecht Dürer – his design of a pentagon, grandpa told to Maria and Bernd.”

626


Draw line segment AB (a = 4cm).
Now the blue circles, they intersect in points F and G.
So line G is formed.
Now draw the green circle (center F and r = a). The points of intersection between the green and the blue circle are I respectively J. The upper point of the intersection of the green circle and g is H. Now the lines i – JH and f – IH are drawn. The points C and E are formed. They become the center of the red circle (r = a) and you get another point D. The pentagon ABCDE looks regular. How big would area and perimeter be, if the pentagon would be regular with a = 4cm. – 4 blue points
Is such a designed pentagon really regular? The proof or disproof of the regularity of Dürer’s pentagon gets you 6 blue points.
Solving the picture-puzzle will get you two extra blue points, provided you also got points doing the regular maths problem. The rule for each picture puzzle is: Each icon represents one digit, same icons, same digits, different icons, different digits. ©HRGauern[at]@t-online.de

626 nusskn

it

„Maria, so che hai già costruito un paio di lettere secondo le istruzioni di Dürer. Mi sono piaciuti tantissimo. Ecco perché ti ho portato un’ altra costruzione di Dürer – la sua costruzione di un pentagono.”, diceva il nonno di Maria e Bernd.

626

Disegnare il segmento AB (a = 4 cm), poi I cerchi blu che si intersecano nei punti F e G; così risulta la retta g. Adesso disegnare il cerchio verde (centro F; r = a). I punti di intersezione di esso coi cerchi blu sono I e J. Il punto di intersezione del cerchio verde con g si chiama H. Adesso si disegnano le rette i – JH e f – IJ. Risultano quindi I punti C e E, che diventano i centri dei cerchi rossi (r = a) dei quali risulta il punto D.
Il pentagono ABCDE sembra essere regolare. Quale sarebbero la superficie e la circonferenza di questo pentagono in questo caso (con a = 4 cm)? 4 punti blu
È vero che un pentagono, costruito in questo modo, sia veramente regolare? Per la verificazione o falsificazione della regolarità di un pentagono secondo la costruzione di Dürer vengono dati 6 punti rossi.
La soluzione dell´indovinello simbolico apporta altri due punti blu, ma solo se si apportano punti regolari. Per l´indovinello vale: Ogni simbolo sta per una cifra, stessi simboli, stessa cifra, diversi simboli diverse cifre. ©HRGauern[at]@t-online.de

626 nusskn

Lösung/solution/soluzione/résultat:
Der Rekord bei den Schultekacheln liegt derzeit bei 17 Punkten, erzielt durch Reinhold M., Glückwunsch. 16 Punkte erreichte Magdalene (Glückwunsch auch hier), die damit den alten Rekord einstellte.
Musterlösung von Maximilian, der alle Winkel (wie andere auch) im Dürerfünfeck berechnet hat, danke. --> pdf <--