Serie 53
Beitragsseiten
Aufgabe 8
632. Wertungsaufgabe
„Sind die gleichseitigen Dreiecke und die Quadrate, die du ausgeschnitten hast, alle gleich groß?“, fragte Bernd seine Schwester. „Ja, die haben alle die Kantenlänge a = 4 cm. Ich lege daraus Figuren und ermittle die Anzahl der Ecken. Ich nehme so viele von den Dreiecken oder Quadraten wie ich möchte. Schön Kante an Kante legen.“
Quadrat + Quadrat ergibt ein Rechteck, das hat 4 Ecken. Dreieck + Dreieck ergibt ein Rhombus, das hat auch 4 Ecken. Ein Quadrat + ein Dreieck ergibt ein 5-Eck, das, wie der Name sagt, 5 Ecken hat. Was man kombiniert, ist beliebig, die Figur darf aber keine Löcher haben und soll konvex sein.
Je 3 blaue Punkte für eine Figur mit 7 bzw. 8 Ecken.
Je 3 rote Punkte für eine Figur mit 9 bzw. 10 Ecken. Bernd meint, aus den vielen Dreiecke und Quadraten ließe sich bestimmt jedes konvexe n- Eck legen (n>2), wenn man nur lange genug probiert. Hat er Recht? Noch einmal 3 rote Punkte.
Die Lösung des Symbolrätsels bringt zwei zusätzliche blaue Punkte, aber nur wenn reguläre Punkte eingebracht werden. Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, → gleiche Ziffer, verschiedene Symbole → verschiedene Ziffern. © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!
Termin der Abgabe 05.03.2020. Ultimo termine di scadenza per l´invio è il 05.03.1920. Deadline for solution is the 5th. March 2020. Date limite pour la solution 05.03.2020. Soluciones hasta el 05.03.2020. Beadási határidő 2020.03.05.
hun
„Az egyenlő szárú háromszögek és négyszögek, amiket kivágtál, mind egyenlő nagyságúak?” - kérdezte Bernd a nővérét. „ Igen, mindegyik éle a = 4 cm. A formákat egymás mellé téve hozom létre a sokszögeket. Annyit veszek a három és négyszögekből, amennyit szeretnék. Szépen élt az élhez teszem. „Négyszög és négyszög egy téglalapot alkot, aminek 4 sarka van. Háromszög és háromszög rombuszt hoz létre, aminek ugyancsak 4 sarka van. Egy négyszög és egy háromszög pedig egy ötszöget, aminek,mint a nevében is áll, öt szöge van. Tetszőlegesen lehet a formákat kombinálni, de nem lehet benne lyuk, konvexnek kell lennie. 3-3 kék pont egy 7 illetve 8 szögű formáért. 3-3 piros pont egy-egy 9 illetve 10 szögű formáért. Bernd szerint sok három és négyszögből biztosan ki lehet alakítani minden konvex sokszöget (n>;2), ha az ember kitartóan próbálja. Igaza van? Még egyszer 3 piros pont
A szimbólum rejtvény megoldásáért további két kék pontot kaphat, amennyiben a többi feladatért is szerzett pontot. A rejtvény megfejtésére érvényes: minden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket. ©HRGauern[at]@t-online.de
fr
"Les triangles équilatéraux et les carrés que tu découpes, sont-ils tous de la même taille?", a demandé Bernd à sa sœur. "Oui, ils ont tous la longueur du bord a = 4 cm. J'en pose des figures et je détermine le nombre de coins. Je prends autant de triangles ou de carrés que je veux, déposé bord à bord.
Carré + carré donne un rectangle à 4 coins. Triangle + triangle donne un losange, qui a également 4 coins. Un carré + un triangle donne un 5 coins qui, comme son nom l'indique, a 5 coins. Ce que tu combine est arbitraire, mais la figure ne doit pas avoir de trous et doit être convexe.
3 points bleus chacun pour une figure à 7 ou 8 coins.
3 points rouges chacun pour une figure à 9 ou 10 coins.
Bernd pense que n'importe quel n-coin convexe (n>2) peut être fait à partir des nombreux triangles et carrés si on essaye seulement assez longtemps. A-t-il raison? Encore 3 points rouges.
La solution de l'énigme apporte deux points bleus supplémentaires, mais seulement si des points réguliers ont été obtenus. Règle pour l’énigme:Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. ©HRGauern[at]@t-online.de
esp
„Todos estos triángulos equiláteros y cuadrados que has recortado son del mismo tamaño?, le preguntó Bernd a su hermana. „Sí, todos tienen la longitud de cantos de a = 4 cm. Con éstos coloco figuras y calculo la cantidad de esquinas. Tomo cuántos cuadrados y triángulos como quiera y les pongo siempre canto a canto.“
Cuadrado + cuadrado da como resultado un rectángulo con 4 esquinas. Triángulo + triángulo da como resultado un rombo con 4 esquinas. Cuadrado + triángulo da como resultado un pentágono con 5 esquinas. Generalmente se
puede combinar arbitrariamente, pero la figura no debe tener agujeros y tiene que ser convexo.
Cada vez 3 puntos azules para una figura de 7 o sea 8 esquinas.
Cada vez 3 puntos rojos para una figura de 9 o sea 10 esquinas.
Bernd dice que con todos estos triángulos y cuadrados seguramente se podría construir cada polígono regular que sea (n>2). ¿Tiene razón? Otra vez 3 puntos rojos.
Por la solución de rompecabeza de símbolos se recibe dos puntos azules adicionales si se ha ganado los puntos regulares antes. Para el rompecabeza aplica lo siguiente: Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras. ©HRGauern[at]@t-online.de
en
„Do those equilateral triangles and squares, that you did cut out, have the same size?“, Bernd asked his sister. „Yes, they all do have the same edge length a = 4 cm. I use them to position figures and calculate the number of edges. I take as many triangles and squares as I like. Nicely put edge to edge.“
Square and square add up to a rectangle, that has 4 edges. Triangle and triangle add up to a rhomb, that has 4 edges too. One square and one triangle add up to a pentagon, that has 5 edges. What you combine is your choice, the figure is not allowed to have any holes and has to be convex.
3 blue points for each figure with 7 to 8 edges.
3 red points for each figure with 9 to 10 edges. Bernd states that with all the triangles and squares you can create every convex n-edge (n>2), if you only try long enough. Is he right? Another 3 red points.
Solving the picture-puzzle will get you two extra blue points, provided you also got points doing the regular maths problem. The rule for each picture puzzle is: Each icon represents one digit, same icons, same digits, different icons, different digits. ©HRGauern[at]@t-online.de
it
“Hanno tutti la stessa misura I triangoli equilateri ed i quadratic he hai ritagliati?”, Bernd chiedeva sua sorella. “Sì. Hanno tutti la lunghezza degli spigoli a = 4 cm. Ne formo delle figure e localizzo il numero degli angoli. Prendo quanti dei triangoli e quadrati he voglio e li metto accuratamente spigolo a spigolo.”
Quadrato + quadrato formano un rettangolo che ha 4 angoli. Triangolo + triangolo formano un rombo che ha anche 4 angoli. Un quadrato + un triangolo formano un pentagono che ha 5 angoli. Non importa cosa si combini, basta che la figura non abbia buchi, sia convesso.
3 punti blu per una figura con 7 angoli e altri 3 per una con 8 angoli.
3 punti rossi per una figura con 9 angoli e altri 3 per una con 10 angoli.
Bernd afferma che con abbastanza di questi triangoli e quadrati si possa formare ogni poligono convesso. Ha ragione? Altri 3 punti rossi
La soluzione dell´indovinello simbolico apporta altri due punti blu, ma solo se si apportano punti regolari. Per l´indovinello vale: Ogni simbolo sta per una cifra, stessi simboli, stessa cifra, diversi simboli diverse cifre. ©HRGauern[at]@t-online.de
Lösung/solution/soluzione/résultat:
Die geforderten n-Ecke ließen sich in mehreren Varianten finden. Auch für die Überlegung von Bernd (oder besser gesagt deren Widerlegung) gab es mehrere Varianten. Hier die Überlegungen von Reinhold M., danke
Als Vorüberlegung beginne ich mal wieder mit dem Schluss: in einem (nicht überschlagenen...) n-Eck ist die (Innen-)Winkelsumme W gleich (n - 2) * 180°. Ist es konvex, so ist jeder der Winkel kleiner als 180°.
In unserem Fall, der Zusammensetzung von gleichseitigen Dreiecken mit Innenwinkeln von 60° und Quadraten mit Innenwinkeln von 90°, kommen nur folgende vier Innenwinkelgrößen in Frage:
60° (ein Dreieck),
90° (ein Quadrat),
120° (zwei Dreiecke),
150° (ein Dreieck und ein Quadrat).
Damit ergibt sich als obere Schranke für die Winkelsumme W
W = (n - 2) * 180° <= n * 150°;
folglich gilt
n <= 2 * 180° / (180° - 150°) = 12.
Bernd hat also mit seiner roten Vermutung nicht Recht.
Nun noch die Konstruktionsbeispiele für n = 7 bis n = 10. Da alle Seitenlängen gleich sind, ist die Korrektheit der Konstruktion gezeigt, wenn alle Innenwinkel kleiner als 180° sind (wobei = 180° zusätzlich zulässig ist und nicht zu den Innenwinkeln zählt), die Innenwinkelsumme gleich (n - 2) * 180° ist sowie die Winkelsumme der innerhalb des Polygons liegenden Eckenberührungspunkte der Einzelteile jeweils gleich 360° sind. Der Anhang illustriert die Konstruktionsbeschreibungen (allerdings ohne Blau- bzw. Rotfärbung...).
- Ein blaues Siebeneck erhält man beispielsweise, wenn man quasi in einem geschlossenen Kreis aneinander legt
Quadrat - Dreieck - Quadrat - Dreieck - Dreieck (das an das erste Quadrat anschließt).
Probe:
Innenwinkel 90° + 150° + 150° + 90° + 150° + 120° + 150° = 900° = 5 * 180°,
ein innerer Berührungspunkt 90° + 60° + 90° + 60° + 60° = 360°.
- Ein blaues Achteck erhält man beispielsweise, wenn man zunächst zwei Dreiecke an gegenüberliegende Seiten eines Quadrats anlegt, diese Konstruktion mit anderen Teilen ein zweites Mal durchführt, beide Flächen an zwei offenen Quadratseiten aneinanderlegt und beide verbliebenen Lücken mit Dreiecken auffüllt.
Probe:
Innenwinkel 4 * 150° + 4 * 120° = 1080° = 6 * 180°,
zwei durch eine Quadratseite verbundene innere Berührungspunkte mit jeweils 2 * 90° + 3 * 60° = 360°.
- Ein rotes Neuneck erhält man beispielsweise, wenn man an die drei Seiten eines Dreiecks jeweils ein Quadrat anlegt und die Lücken zwischen ihnen mit jeweils zwei Dreiecken füllt.
Probe:
Innenwinkel 6 * 150° + 3 * 120° = 1260° = 7 * 180°,
drei paarweise durch eine Dreiecksseite verbundene innere Berührungspunkte mit jeweils 2 * 90° + 3 * 60° = 360°.
- Ein rotes Zehneck erhält man beispielsweise, wenn man an die vier Seiten eines aus zwei Dreiecken bestehenden Rhombus' jeweils ein Quadrat legt und die Lücken zwischen ihnen abwechselnd mit zwei Dreiecken (an den Spitzen des Rhombus) bzw. einem Dreieck auffüllt.
Probe:
Innenwinkel: 8 * 150° + 2 * 120° = 1440° = 8 * 180°,
vier paarweise durch eine Dreieckseite verbundene innere Berührungspunkte mit jeweils 2 * 90° + 3 * 60° = 360° (kein Unterschied zwischen den zwei Sorten - ein inneres und zwei äußere bzw. ein äußeres und zwei innere Dreiecke).
Das Mainzelmännchenrätsel habe ich zu
ABC / BD = BE
- * +
A + BA = BE
= = =
ACF - BFC = AF
umgeschrieben. Zunächst folgt der 3. Zeile
C = 0, A + F = 10, B + 1 = A
und damit der 3. Spalte
B = 1, A = 2, F = 8, E = 4
und schließlich der 1. Zeile bzw. 2. Spalte
D = 5.
Die Lösung ist somit zusammengefasst
210 / 15 = 14
- * +
2 + 12 = 14
= = =
208 - 180 = 28.