Serie 55

Beitragsseiten

Serie 55

Hier werden die Aufgaben 649 bis 660 veröffentlicht.

Aufgabe 1

649. Wertungsaufgabe

Maria las in einem Buch über die Hauptstädte Europas, war aber nicht sehr aufmerksam und so dachte sie an den letzten Urlaub im Jahr 2019 zurück. Sie hatte sich mit 5 Mädchen (Dana, Frieda, Lena, Ronja und Salome) angefreundet.. Jede von Ihnen übernachtete in einer anderen Etage (erste, zweite, dritte, vierte, fünfte bzw. sechste). Die Zimmernummern waren 11, 12, 13, 14, 15 und 16. Jede Etage hatte einen anderen Farbton (rot, grün, blau, gelb, grau und orange.)

  1. Friedas Etage war rot.. Salome, deren Zimmernummer um 2 größer ist als die von Maria, wohnte weiter unten als Frieda.
  2. Das Mädchen aus der fünften Etage wohnte im Zimmer 14.
  3. Die sechste Etage war grau. Ronja, die nicht in der sechsten Etage wohnte, hatte die Zimmernummer 13.
  4. Lena übernachtete in der vierten Etage.
  5. Dana hatte nicht die Zimmernummer 12.
  6. Das Mädchen aus dem Zimmer 16 wohnte nicht in der ersten Etage.
  7. Das Mädchen aus Zimmer 15 übernachtete in der Etage, die orange war.
  8. Die gelbe Etage war direkt über der blauen Etage.

Wer, wohnte in welcher Etage (Zahl und Farbe) und hatte welche Zimmernummer? 6 blaue Punkte

Name

Zimmernummer

Etagennummer

Farbe

Maria

     

Dana

     

Frieda

     

Lena

     

Ronja

     

Salome

     

Nun aber musste Maria doch wieder in ihr Buch schauen. Maria las die Kapitel über Athen, Berlin, Paris, Prag und Madrid. Zu Beginn der Kapitel (Seiten: 11, 29, 33, 41 und 57) war ein schönes Foto zu sehen. Auch wer die Fotos gemacht hatte, war zu lesen. Da gab es die Vornamen Alfons, Greta, Helena, Jana und Leo, sowie die Familiennamen: Astor, Holland, Menger, Sonne und Titan.

  1. Das Foto von Athen war vor dem Bild des Fotografen Alfons Holland, wobei die Seitenzahl von dessen Foto nicht durch 3 teilbar war.
  2. Helena hatte das Bild von Paris gemacht.
  3. Janas Foto, es war nicht Berlin, befand sich nicht auf Seite 33.
  4. Greta, die nicht Sonne hieß, machte das Foto für die Seite 11.
  5. Auf Seite 29 war das Foto von Madrid.
  6. Der Nachname Astor war auf Seite 41 zu lesen, aber nicht der Vorname Leo.
  7. Unter dem Bild von Prag stand der Name Titan.

Wer (Vor- und Zuname) fotografierte welche Stadt? Auf welchen Seiten befanden sich die Bilder? 6 rote Punkte

Stadt

Seite

Vorname

Familienname

Athen

     

Berlin

     

Paris

     

Prag

     

Madrid

     

--> Vorlage als pdf <--

Termin der Abgabe 24.09.2020. Срок сдачи 24.09.2020. Ultimo termine di scadenza per l´invio è il 24.09.1920. Deadline for solution is the 24th. September 2020. Date limite pour la solution 24.09.2020. Soluciones hasta el 24.09.2020. Beadási határidő 2020.09.24.

rus

Задача по логике

Мария читала в какой-то книге о столицах европейских стран. Однако, она была не очень внимательна, вспоминала последний отпуск в 2019-ом году. Тогда она подружилась с 5-ю девушками (Дана, Фрида, Лена, Роня и Саломе). Каждая из них ночевала на другом этаже (первый, второй, третий, четвёртий, пятый и шестой). Их комнаты имели следующие номера: 11, 12, 13, 14, 15 и 16. Каждый этаж был оформлен в другом цвете (красный, зелёный, синий, жёлтый, серый и оранжевый).

  1. Фрида ночевала на красном этаже. Саломе жила ниже Фриды и номер её комнаты была на два меньше чем у Марии.
  2. Девушка с пятого этажа жила в комнате номер 14.
  3. Шестой этаж имел серый цвет. Роня, которая жила не на шестом этаже, имела комнату с номером 13.
  4. Лена ночевала на четвёртом этаже.
  5. Дана не имела кмнату с номером 12.
  6. Девушка с номером 16 не жила на первом этаже.
  7. Девушка из номера 15 ночевала на оранжевом этаже.
  8. Жёлтый этаж находился непосредственно над синим этажом.

Кто жил на каком этаже (номер и цвет этажа) и какой номер имела её комната?
6 сийних очков

Имя

Номер комнаты

Номер этажа

Цвет этажа

Мария

     

Дана

     

Фрида

     

Лена

     

Роня

     

Саломе

     

Однако теперь Мария должна была снова посмотреь в свою книгу. Мария прочитала глвы про Афины, Берлин, Париж, Прагу и Мадрид. В начале этих глав (страницы 11, 29, 33, 41 и57) можно было увидеть красивую фотографию. Можно было также читать, кто эти фтографии сделал. Там были имена Альфонс, Грета, Хелена, Яна и Лео и фамилии Астор, Голланд, Менгер, Зонне и Титан.

  1. Фото Афиных находилось перед картиной фотографа Альфонса Голланда, при чём номер страницы его фото не делился через 3.
  2. Хелена сделала фото Парижа.
  3. Фотография Яны не была из Берлина и не находилась на странице 33.
  4. Грета, фамилия которрой не была Зонне, сделала Фото для страницы 11.
  5. На странице 29 была фотография Мадрида.
  6. На странице 41 была фамилия Астор, имя Лео там не было.
  7. Под фотографией Праги стояла фамилия Титан.

Кто (имя и фамилия) сфотографировал какой город? На каких страницах находились фотографии? 6 красных очков

Город

Страница

Имя

Фамилия

Афины

     

Берлин

     

Париж

     

Прага

     

Мадрид

     

ung

Logikai feladat

Mária Európa fővárosairól olvasott, de nem valami figyelmesen, mert az előző, 2019-es évi nyaralására gondolt vissza. 5 lánnyal (Dana, Frieda, Lena, Ronja und Salome) barátkozott össze. Mindegyikük másik emeleten szállt meg. A szobaszámok a következők voltak: 11, 12, 13 ,14, 15 és 16. Minden emeletet más színnel jelöltek meg (piros, zöld, kék, sárga, szürke és narancssárga).

  1. Frida emelete piros színű volt. Soloma, akinek a szobaszáma kettővel nagyobb volt, mint Máriáé lentebb lakott, mint Frieda.
  2. A lány az 5.emeletről a 14-es szobában lakott.
  3. A hatodik emelet szürke színű volt. Ronja, aki nem a hatodikon lakott, a 13-as szobát lakta.
  4. Léna a negyediken éjszakázott.
  5. Dana lakott a 12-es szobában.
  6. A lány a 16-os szobából nem az első emeleten lakott.
  7. A lány a 15-ös szobából azon az emeleten töltötte az éjszakát, amelyik narancssárga volt.
  8. A sárga színű emelet közvetlenül a kék emelet felett volt.

Ki, melyik emeleten és melyik szobában lakott? 6 kék pont

Ekkor Máriának mégiscsak bele kellett újból pillantania a könyvébe. Elolvasott egy-egy fejezetet Athénról, Berlinről, Prágáról és Madridról. A fejezetek elején (11., 29., 33., 41. és 57. oldal) egy-egy szép fényképet láthatott. Azt is el lehetett olvasni, ki készítette a fotókat. Keresztnevük szerint egy Alfons, Greta, Helene, Jana és Leo, vezetéknevük alapján Astor, Holland, Meger, Sonne és Titan.

  1. Athénról Alfons Holland készített fényképet, de ez az oldalszám nem volt osztható hárommal.
  2. Helena fotózta le Berlint.
  3. Jana fényképe, ami nem Berlinről készült, a 33. oldalon található meg.
  4. Greta, akinek a vezetékneve nem Sonne, csinálta a képet a 11. oldalon.

5.A 29. oldalon volt a fotó Madridról.

  1. Astor neve a 41. oldalon volt olvasható, de a családi neve nem Leo.
  2. Prága képe alatt Titan neve állt.

Ki (teljes névvel) melyik várost fényképezte? Melyik oldalon találhatók a fotók? 6 piros pont

frz

Exercice de logique

Maria a lu dans un livre sur les capitales de l'Europe mais n'était pas très attentive et a donc repensé aux dernières vacances en 2019. Elle se lie d'amitié avec 5 filles (Dana, Frieda, Lena, Ronja et Salome), chacune d'elles restant à un étage différent (premier, deuxième, troisième, quatrième, cinquième ou sixième). Les numéros de chambre étaient 11, 12, 13, 14, 15 et 16. Chaque étage était d'une nuance différente (rouge, vert, bleu, jaune, gris et orange).

  1. Le premier étage de Frieda était rouge et Salomé, dont le numéro de chambre est 2 plus grand que celui de Maria, habitait des étages plus bas que Frieda.
  2. La fille du cinquième étage vivait dans la chambre 14.
  3. Le sixième étage était gris. Ronja, qui n'habitait pas au sixième étage, avait la chambre numéro 13.
  4. Lena habitait au quatrième étage.
  5. Dana n'avait pas le numéro de chambre 12.
  6. La fille de la chambre 16 n'habitait pas au premier étage.
  7. La fille de la chambre 15 habitait à l'étage orange.
  8. L'étage jaune était directement au-dessus du l'étage bleu.

Qui habitait à quel étage (numéro et couleur) et avait quel numéro de chambre? 6 points bleus

Nom

Numéro Chambre

Étage

Couleur

Maria

     

Dana

     

Frieda

     

Lena

     

Ronja

     

Salome

     

Mais maintenant, Maria devait revoir son livre. Maria a lu les chapitres sur Athènes, Berlin, Paris, Prague et Madrid. Au début des chapitres (pages 11, 29, 33, 41 et 57) il y avait une jolie photo.

Il était également possible de lire qui avait pris les photos. Il y avait les prénoms Alfons, Greta, Helena, Jana et Leo, ainsi que les noms de famille: Astor, Holland, Menger, Sonne et Titan.

  1. La photo d'Athènes était avant la photo du photographe Alfons Holland, et le numéro de page de sa photo n'était pas divisible par 3.
  2. Helena a pris la photo de Paris.
  3. La photo de Jana, ce n'était pas Berlin, n'était pas à la page 33.
  4. Greta, dont le nom n'était pas le Sonne, a pris la photo de la page 11.
  5. À la page 29 se trouvait la photo de Madrid.
  6. Le nom de famille Astor était à la page 41, mais pas le prénom Leo.
  7. Sous l'image de Prague se trouvait le nom de Titan.

Qui (prénom et nom) a photographié quelle ville? Sur quelles pages figuraient les images? 6 points rouges

Ville

Page

Prénom

Nom

Athènes

     

Berlin

     

Paris

     

Prague

     

Madrid

     

esp

problema de lógica

María ha leído en un libro sobre las capitales europeas, pero no estaba muy atenta entonces se acordó de las vacaciones pasadas del año 2019. Se había hecho amiga con cinco chicas (Dana, Frieda, Lena, Ronja y Salome). Cada una de ellas pernoctaba en otra planta (primera, segunda, tercera, cuarta, quinta, sexta). Los números de habitación eran 11, 12, 13, 14, 15 y 16. Cada planta tuvo otro color (rojo, verde, azul, amarillo, gris y naranja).

  1. La planta de Frieda era roja. Salome, cuyo número de habitación era por 2 más grande que la habitación de María, vivió debajo de Frieda.
  2. La chica de la quinta planta estaba alojado en la habitación número 14.
  3. La sexta planta era gris. Ronja, que no estaba alojado en la sexta planta, tenía la habitación número 13.
  4. Lena trasnochaba en la cuarta planta.
  5. Dana no tenía la habitación número 12.
  6. La chica de la habitación número 16 no estaba alojado en la primera planta.
  7. La chica de la habitación número 15 trasnochaba en la planta naranja.
  8. La planta amarilla era directamente por encima de la planta azul.

¿Quién trasnochaba en cuál planta (número y color) y tenía cuál número de habitación? 6 puntos azules. 

nombre

número de habitación

planta

color

María

     

Dana

     

Frieda

     

Lena

     

Ronja

     

Salome

     

Pues bien, María otra vez echó un vistazo en su libro. Leyó los capítulos sobre Atenas, Berlín, París, Praga y Madrid. A comienzos de los capítulos (páginas: 11, 29, 33, 41 y 57) se veían fotografías bellas. También se podía ver quién tomó las fotos. Había los nombres Alfons, Greta, Helena, Jana y Leo así como los apellidos Astor, Holland, Menger, Sonne y Titan. 

  1. La foto de Atenas era delante de la imagen del fotógrafo Alfons Holland, a lo cual el número de página no era divisible por tres. 
  2. Helena sacó la foto de París.
  3. La foto de Jana no se encuentra en la página 33 y se tiró en Berlín. 
  4. Greta tomó la foto para la página 11, pero no tiene el apellido “Sonne”.
  5. La foto de Madrid está en la página 29.
  6. El apellido “Astor” se puede leer en la página 41, pero no va con el nombre Leo.
  7. Debajo de la imagen de Praga está escrito el apellido “Titan”. 

¿Quién (nombre y apellido) ha fotografiado cuál capital y en cuáles páginas están las imágenes? 6 puntos rojos

capital

página

nombre

apellido

Atenas

     

Berlín

     

París

     

Praga

     

Madrid

     

en
Logic puzzle
Maria read a book about the capitals of Europe, wasn’t very attentive and thought about her last holiday in 2019. She became friends with five girls (Dana, Frieda, Lena, Ronja und Salome). Everyone of them slept on another hotel floor (first, second, third, fourth, fith and sixth). The room numbers were 11, 12, 13, 14, 15 and 16. Every floor did have another color (red, green, blue, yellow, grey and orange.)

  1. Frieda‘s floor was red.. Salome, whose room number was about 2 bigger than the one of Maria, lived further down than Frieda.
  2. The girl from the fifth floor lived in room 14.
  3. The sixth floor was grey. Ronja, who didn’t live on the sixth floor, had room number 13.
  4. Lena slept on the fourth floor.
  5. Dana did not have room number 12.
  6. The girl from room 16 did not live on the first floor.
  7. The girl from room 15 slept on the orange floor.
  8. The yellow floor was directly above the blue floor.

Who lived on which floor (number and color) and had which room number? 6 blue points

Name

room number

floor

color

Maria

     

Dana

     

Frieda

     

Lena

     

Ronja

     

Salome

     

Now Maria had to look back at her book again. Maria read the chapter about Athen, Berlin, Paris, Prague and Madrid. At the beginning of the chapter (pages: 11, 29, 33, 41 and 57) was a nice photo. There was even written who did the photos. There were the names Alfons, Greta, Helena, Jana and Leo, and there surnames: Astor, Holland, Menger, Sonne and Titan.

  1. The photo from Athen could be found before the photo of the photographer Alfons Holland. The page number of his photo could not be divided by 3.
  2. Helena had taken a picture of Paris.
  3. Jana‘s photo, it wasn’t Berlin, was not on page 33.
  4. Greta, who wasn’t named “Sonne”, took the photo on page 11.
  5. On page 29 was the photo of Madrid.
  6. The surname Astor could be read on page 41, but it was not from the photographer named Leo.
  7. Under the picture from Prague stood the name Titan.

Who (name and surname) did take a photo of which city? On which pages could the pictures be found? 6 red points

city

page

name

surname

Athen

     

Berlin

     

Paris

     

Prague

     

Madrid

     

it

Compito di logica

Maria leggeva in un libro delle capitali di Europa, però non era molto attenta, ma pensava alle sue ultime vacanze nel 2019.

Aveva fatto amicizia con 5 ragazze (Dana, Frieda, Lena, Ronja e Salome). Ognuna di loro soggiornava in un altro piano (primo, secondo, terzo, quarto, quinto, sesto). I numeri delle stanze erano 11, 12, 13, 14, 15 e 16. Ogni piano era dipinto in un altro colore (rosso, verde, blu, giallo, grigio, arancione).

1.Il piano di Frieda era rosso. Salome, del quale numero di stanza era 2 più alto di quello di Maria, abitava più in giù che Frieda.

  1. La ragazza del quinto piano abitava in stanza numero 14.
  2. Il sesto piano era grigio. Ronja, che non abitava al sesto piano, aveva il numero 13.
  3. Lena soggiornava al quarto piano.
  4. Dana non aveva il numero 12.
  5. La ragazza di stanza 16 non abitava al primo piano.
  6. La ragazza di stanza numero 15 soggiornava al piano che era arancione.
  7. Il piano giallo stava direttamente sopra quello dipinto in blu.

Chi abitava in quale piano (colore e numero) ed aveva quale numero di stanza) – 6 punti blu

nome

numero di stanza

numero del piano

colore

Maria

     

Dana

     

Frieda

     

Lena

     

Ronja

     

Salome

     

Prima o poi, Maria continuava a studiare suo libro. Leggeva i capitoli su Atene, Berlino, Parigi, Praga e Madrido. All’ inizio dei capitoli (pagine 11, 29, 33, 41 e 57) c’era sempre una bella foto. Si poteva anche leggere chi aveva fatto la foto. C’ erano I nomi Alfons, Greta, Helena, Jana e Leo ed i cognomi Astor, Holland, Menger, Sonne e Titan.

  1. La foto di Atene era del fotografo Alfons Holland. Il numero della pagina dov’era non era divisibile per 3.

2.Helena aveva fatto la foto di Parigi.

  1. La foto di Jana, non Berlino, non si trovava su pagina 33.
  2. Greta, che non si chamava Sonne, faceva la foto su pagina 11.
  3. Su pagina 29 c’era la foto di Madrido.
  4. Il cognome Astor era su pagina 41, ma non il nome Leo.
  5. Sotto la foto di Praga stave il nome Titan.

Chi (nome e cognomen) faceva la foto di quale città? Su quale pagina si trovavano le foto? – 6 punti rossi

città

pagina

nome

cognome

Athen

     

Berlin

     

Paris

     

Prag

     
 

Lösung/solution/soluzione/résultat:

Musterlösungen von Hirvi, danke --> pdf <--

und Reinhold M.

bei "blau" folgt sofort aus 1.
 Frieda rot,
also wegen 3.
 Frieda nicht 6.,
und aus 3.
 Ronja 13
sowie aus 2.
 14 5.
Damit bleiben mit 1. für Salome und Maria nur
 Maria 14 5.,
 Salome 16 - wegen 6. nicht 1.
Weiter gilt nach 4.
 Lena 4.,
womit nach 1. für die Etagen endgültig nur bleibt
 Salome 2.,
 Frieda 3.
sowie wegen 3.
 Ronja 1.,
also
 Dana 6. - wegen 3. grau.
Damit bleibt für 7. nur Lena:
 Lena 15 4. orange,
sowie für 8. die 1. und die 2.:
 Ronja 1. blau,
 Salome 2. gelb,
also
 Maria grün.
Wegen 5. ist schließlich
 Dana 11,
 Frieda 12,
so dass das "blaue Ergebnis" zusammengefasst lautet:

Maria - Zi. 14 - 5. Et. - grün
Dana - Zi. 11 - 6. Et. - grau
Frieda - Zi. 12 - 3. Et. - rot
Lena - Zi. 15 - 4. Et. - orange
Ronja - Zi. 13 - 1. Et. - blau
Salome - Zi. 16 - 2. Et. - gelb

Bei "rot" folgt aus 1. mit 6. - und 5. - sofort
 Madrid 29 Alfons Holland
und mit 4.
 Athen 11 Greta.
Mit 2.
 Paris Helena
folgt aus 3. - und 7. -
 Prag Jana Titan,
also
 Berlin Leo
und mit 6.
 Paris 41 Helena Astor.
Damit folgt schließlich aus 3. und 4.
 Berlin 33 Leo Sonne,
und für Greta bleibt der Name Menger sowie für Prag Seite 57, so dass das "rote Ergebnis" zusammengefasst lautet:

Athen - S. 11 - Greta Menger
Berlin - S. 33 - Leo Sonne
Paris - S. 41 - Helena Astor
Prag - S. 57 - Jana Titan
Madrid - S. 29 - Alfons Holland


Aufgabe 2

Wertungsaufgabe 650

 

650

„Was machst du mit den Quadraten im Koordinatensystem?“, fragte Mike. „Die 6 Quadrate sollen mir bei den Übungen mit linearen Funktionen helfen.“, erwiderte Lisa. „Pass auf“.
Blaue Aufgabe. Finde das kleinste Quadrat – eine Seite auf der y-Achse – in das alle 6 Quadrate hineinpassen. Die Diagonalen des gesuchten Quadrats sind Bilder von linearen Funktionen mit je einer Gleichung y=f(x)=mx+n. Wie heißen die Funktionsgleichungen? Welche der kleinen Quadrate haben keine Punkte mit den Diagonalen gemeinsam? 5 blaue Punkte.
Rote Aufgabe: Es sind drei lineare Funktionen (y=f(x)=mx+n) zu finden, deren Bilder alle 6 kleinen Quadrate „trennen“. Jede Gerade berührt mindestens ein kleines Quadrat. und m und n sind ganze Zahlen. Die Angabe einer Lösungsvariante reicht. 6 rote Punkte.

Termin der Abgabe 08.10.2020. Срок сдачи 08.10.2020. Ultimo termine di scadenza per l´invio è il 08.10.2020. Deadline for solution is the 8th. October 2020. Date limite pour la solution 08.10.2020. Soluciones hasta el 08.10.2020. Beadási határidő 2020.10.08.

rus

650

«Что ты делаешь с квадратами в координатной системе?», спросил Майк. «Эти 6 квадратов должны мне помогать при упряжнениях по линейным функциям», ответила Лиза. «Смотри».
Синяя задача: Найди наименьший квадрат — одна сторона на оси у — в который укладываются все 6 квадратов. Диагонали искомого квадрата - графики линейных функций с уравнениями у=f(х)=mx+n. Как гласят эти уравнения? Какие из маленьких квадратов не имеют общих точек с диагоналами? 5 синих очков.
Красная задача: Нужно найти 3 линейных функций (у=f(х)=mx+n), графики которых «разделят» все 6 маленьких квадратов. Каждая прямая касается по крайней мере одного маленького квадрата, а m и n являются целыми числами. Достаточно указать один вариант решения. 6 красных очков.

ung

650

„Mit teszel a négyzetekkel a koordináta rendszerben?” – kérdezte Mike. „ A 6 négyzet a lineáris feladatok gyakorlásában segít.” –válaszolta Lisa. „Figyelj csak!”
Kék feladat: találd meg a legkisebb négyzetet – egyik oldala az y tengelyre fekszik – amibe mind a 6 négyzet belefér. A keresett négyzet átlói a lineáris függvények ezen egyenletének y=f(x)=mx+n ábrázolásai. Hogy hívják a függvényt? A kis négyzetek közül melyiknek nincs közös pontja az átlókkal? 5 kék pont
Piros feladat: Három lineáris egyenlet y=f(x)=mx+n található, ha mind a 6 kis négyszög képeit „szétszedjük”. Minden egyenes érint legalább egy kis négyzetet. Valamint m és n egész számok. Egy megoldási változat megadása elegendő. 6 piros pont.

frz

650

"Que fais-tu avec les carrés dans le système de coordonnées?", a demandé Mike. "Les 6 carrés devraient m'aider avec les exercices des fonctions linéaires", répondit Lisa. "Fais attention".
Exercice bleue. Trouvez le plus petit carré - un côté sur l'axe des y - dans lequel s'inscrivent les 6 carrés. Les diagonales du carré que vous recherchez sont des images de fonctions linéaires, chacune avec une équation y = f(x) = mx + n. Comment s'appellent les équations fonctionnelles? Lequel des petits carrés n'a aucun point en commun avec les diagonales? 5 points bleus.
Exercice rouge: Il y a trois fonctions linéaires (y = f(x) = mx + n) à trouver, dont les images «séparent» les 6 petits carrés. Chaque ligne droite touche au moins un petit carré, et m et n sont des nombres entiers. Il suffit de préciser une solution possible .. 6 points rouges.

esp

650

“¿Qué estás haciendo con los cuadrados en el sistema de coordenadas?”, preguntó Mike. “Quiero que los 6 cuadrados me sirvan en los ejercicios con funciones lineales”, replicó Lisa. “Mira”.
Tarea azul. Encuentra el cuadrado más pequeño – con un canto al eje de las ordenadas – en el que caben todos los seis cuadrados. Las líneas diagonales del cuadrado buscado son imágenes de funciones lineales con una ecuación de la forma y=f(x)=mx+n en cada caso. ¿Cómo se llaman las ecuaciones funcionales? ¿Cuáles de los cuadrados pequeños no tienen puntos comunes con las líneas diagonales? 5 puntos azules.
Tarea roja: Hay que encontrar tres funciones lineales (y=f(x)=mx+n) cuyas imágenes “separan” todos los seis cuadrados. Cada línea recta roza al menos un cuadrado pequeño. m y n son números enteros. Es suficiente indicar una sola variante para solucionar el problema. 6 puntos rojos. 

en

650

„What are you doing with all the squares in the coordinate system?“, asked Mike. „The 6 squares should help me with my exercise about linear functions.“, answered Lisa. „Have a look“.
Blue task. Find the smallest square – one side on the y-axis – in which all 6 squares do fit in. The diagonals of the square we search are pictures of linear functions with an equation each y=f(x)=mx+n. How are the function equations named? Which of the small squares do not have shared points with the diagonal? 5 blue points.
Red task: Three linear functions (y=f(x)=mx+n) can be found, whose pictures “devide” all 6 small squares. Every line touches at least one small square. m and n are integers. It is enough if you find one variety of the solutions. 6 red points.

it

650

„Cosa stai facendo coi quadrati nel sistema di coordinate?“, chiedeva Mike. „I sei quadrati mi sono un aiuto per gli esercizi con funzioni lineari.“, Lisa replicava. „Stai attento“.
Compito blu: Trova il quadrato piú piccolo - un lato deve essere situato sull‘asse y - nel quale entrino tutti i sei quadrati. Le diagonali di questo quadrato sono immagini di funzioni linerari, ognuna dell’ equazione y=f(x)=mx+n. Quale sono queste equazioni? Quale dei quadrati piccoli non hanno punti comuni con le diagonali? 5 punti blu
Compito rosso: si trovino tre funzioni lineari (y=f(x)=mx+n), di quale le immagini „dividono“ itutti i sei quadrati piccoli. Ogni retta tocca almeno uno dei quadrati e „m“ e „n“ sono numeri interi. Basta una variante di soluzione. 6 punti rossi.

Lösung/solution/soluzione/résultat:

Zwei Musterlösungen, die sich im roten Teil unterscheiden, danke.
Von Calvin -->pdf<-- und Hans -->pdf<--


Aufgabe 3

Wertungsaufgabe 651

 

Vorabveröffentlichung Wochenaufgabe 651

651

„Ich habe mit dieser Zeichnung etwas Interessantes entdeckt“, sagte Maria zu ihrem Bruder. „Lass hören“.
Zwei Seiten des blauen Quadrats (a = 2cm) wurden nach rechts bzw. nach oben verlängert. BE=CF=3a.
Der Flächeninhalt des roten Quadrats EFGH ist m mal größer als der Flächeninhalt des Quadrates ABCD. Berechne die natürliche Zahl m. 6 blaue Punkte.
Man kann eine entsprechende Konstruktion auch mit einem anderen regelmäßigen n-Eck beginnen und die Verhältnisse der Flächeninhalte ermitteln. Außer n=4 – siehe Bild – gibt es nur zwei Werte für n, so dass die passende Zahl m eine natürliche Zahl ist. Welche n-Ecke sind das und wie groß ist das passende m? Für die Berechnung gibt es 2x5=10 rote Punkte.

Termin der Abgabe 15.10.2020. Срок сдачи 15.10.2020. Ultimo termine di scadenza per l´invio è il 15.10.1920. Deadline for solution is the 15th. October 2020. Date limite pour la solution 15.10.2020. Soluciones hasta el 15.10.2020. Beadási határidő 2020.10.15.

rus

651

«Этим рисунком я открыла чего-то интересного», сказала Мария своему брату. «Расскажи!»
Две стороны синего квадрата (а=2см) были удлинены вправо и соответственно вверх. BE=CF=3a. Площадь красного квадрата EFGH в m раз больше квадрата ABCD. Рассчитай натуральное число m. 6 синих очков.
Можно соответствующую конструкцию сделать также с другим правильным n-угольником и рассчитать отношения площадей.
Кроме для n=4 – смотри рисунок – имеются только два значения для n такие, чтобы подходяшее число m было натуральным числом. Какие эти n-угольники и какой тогда m?
Для правильного расчёта получите 2х5=10 красных очков.

ung

651

„Felfedeztem valami érdekeset ezen a rajzon.“ – mondta Mária a bátyjának. „Na, halljuk.“
A kék négyzet (a= 2cm) két oldala balra és felfelé meg lett hosszabbítva. BE=CF=3a. A piros négyzet területe m-szer nagyobb, mint az ABCD négyszögé. Számolja ki a m természetes számot. 6 kék pont
Egy másik szabályos n-szöggel elkezdve is meg lehet állapítani a megfelelő szerkesztést és a a terület arányait.
Kivéve n=4 (lásd az ábrán), itt csak két érték lehetséges, hogy a megfelelő m szám természetes legyen. Melyik n-szög ez és mekkora az ehhez tartozó m?
A jó számításért 2x5, azaz 10 piros pont jár.

frz

651

«J'ai découvert quelque chose d'intéressant dans ce dessin», dit Maria à son frère. "vas-y, dis-moi".
Deux côtés du carré bleu (a = 2 cm) ont été prolongés vers la droite et vers le haut. BE = CF = 3a.
L'aire du carré rouge EFGH est m fois plus grande que l'aire du carré ABCD. Calculez le nombre naturel m. 6 points bleus.
Une construction correspondante peut également être démarrée avec un autre n-gon régulier et les proportions des surfaces peuvent être déterminées. En plus de n = 4 - voir l'image - il n'y a que deux valeurs pour n, de sorte que le nombre correspondant m est un entier naturel. Quels sont ces n-gons et quelle est ce nombre m correspondant?
Pour le calcul, il y a 2x5 = 10 points rouges

esp

651

“Con este dibujo he descubierto una cosa interesante”, le dijo María a su hermano. “¡Pues anda, cuéntame!”
Se han prolongado dos lados del cuadrado azul (a=2cm) hacia la derecha o sea hacia arriba. BE=CF=3a. El área del cuadrado rojo EFGH es m veces más grande que el área del cuadrado ABCD. Calcula el número natural m. 6 puntos azules.
Se puede formar una construcción análoga a partir de otro polígono regular y calcular las proporciones de las áreas. Aparte de n=4 (véase a la imagen) solo hay dos resultados que pueden ser n para que el número correspondiente sea un número natural. ¿Cuáles polígonos son y cuán grande es el número m correspondiente? Para el cálculo se reciben 2x5=10 puntos rojos. 

en

651

„I found something interesting while working on this drawing“, Maria told her brother. „Tell me!“.
Two sides of the blue square (a = 2cm) were extended to the right and to the top. BE=CF=3a.
The area of the red square EFGH is m times bigger than the area of the square ABCD. Calculate the whole number “m”. 6 blue points.
You can start this construction with another regular n-figure with edges and calculate the areas’ relations. Except for n=4 – on the picture – there are only two values n, so that the fitting number “m” is a whole number. Which n-figures with edges are these and what is the fitting “m”?
For the calculation you will get 2x5=10 red points.

it

651

„Con quest‘ illustrazione ho scoperto una cosa interessante”, Maria diceva a suo fratello. “Fammi sentire!”.
Due lati del quadrato blu (a = 2 cm) venivano prolungati a destra rispettivamente in alto. BE=CF=3a. L’ area del quadrato EFGH è m volte più grande di quella del quadrato ABCD. Calcola il numero naturale m – 6 punti blu.
Si può iniziare una costruzione corrispondente anche con altri poligoni (n angoli) regolari per poi calcolare la relazione m delle aree. Tranne per n=4 - come nel disegno – esistono solo altre due quantità per n per le quale m sia un numero natural. Quale poligoni sono e qual’e il valore del m rispondente? – Per la calcolazione vengono date 2x5=10 punti rossi.

Lösung/solution/soluzione/résultat:

Musterlösung von Maximilian, danke. --> pdf <--


Aufgabe 4

Wertungsaufgabe 652

652

„Auch in dieser Konstruktion verbirgt sich ein Geheimnis“, ist sich Mike sicher. „Da bin ich aber gespannt“, meinte Lisa.
Mike hatte zuerst ein gleichseitiges Dreieck (a = 4 cm) gezeichnet. Dann hatte er Umkreis und Inkreis des Dreiecks gezeichnet.. Die beiden ergeben einen Kreisring. Anschließend hatte er das mit dem gezeigten Quadrat (a = 4cm) ebenso gemacht. Wieder hatte er einen Kreisring aus Um- und Inkreis erhalten. Beim Vergleich der Flächeninhalte der Kreisringe war er sehr erstaunt. Warum wohl? 6 blaue Punkte.
Gilt das erstaunliche Ergebnis auch für andere regelmäßige n-Ecke mit a = 4cm? Wie groß muss a gewählt werden, wenn der Kreisring einen Flächeninhalt von 1000 cm² haben soll? (3+3 rote Punkte)

Termin der Abgabe 05.11.2020. Срок сдачи 05.11.2020. Ultimo termine di scadenza per l´invio è il 05.11.2020. Deadline for solution is the 5th. November 2020. Date limite pour la solution 05.11.2020. Soluciones hasta el 05.11.2020. Beadási határidő 2020.11.05.

rus

652

Майк убеждён: «И в этой конструкции скрывается какая-то тайна». «Интересно, мне любопытно посмотреть», сказала Лиза.
Майк сначало нарисовал равносторонний треугольник (a = 4 см). Потом он добавил к нему описанную и вписанную окружности. Между ними получается кольцо. Затем он поступил аналогично с изображённым квадратом (a = 4 см). Опять он получил кольцо между описанной и вписанной окружностями. При сравнении кольцов он очень удивился. Почему же?
6 синих очков.
Получается ли этот удивительный результат также для других равномерных n-угольников при a = 4 см?
Каким нужно выбрать a для того, чтобы кольцо имело площадь 1000 см²?
(3+3 красных очков)

hun

652

„Ebben a szerkesztésben is rejlik egy titok.“ – ebben biztos Mike. „Na, erre kíváncsi vagyok.“ – mondta Lisa. Mike először egy egyenlő szárú háromszöget (a= 4 cm) rajzolt. Aztán a háromszög belsejét és külsejét érintő köröket. Ezek egy körgyűrűt alkotnak. Végül ugyanezt elvlgezte az ábrázolt négyzettel (a = 4 cm) is. Ismét kapott egy körgyűrűt a belső és külső körökből. A körgyűrűk területének összehasonlításakor nagyon meglepődött. Miért? 6 kék pont
Igaz ez a meglepő eredmény miden szabályos n-szögre? Milyen hosszú a szakaszt kell venni, hogy a körgyűrű területe 1000 cm² legyen? (3+3) pontot ér.

frz

652

'Il y a aussi un secret caché dans cette construction', Mike est sûr. «Je suis très enthousiaste», a déclaré Lisa.
Mike a d'abord dessiné un triangle équilatéral (a = 4 cm). Puis il avait dessiné la circonférence et le cercle intérieur du triangle, les deux formant un anneau circulaire. Puis il a fait de même avec le carré indiqué (a = 4cm). Encore une fois, il avait un anneau circulaire composé d'un cercle intérieur et d'un cercle intérieur. En comparant les surfaces des anneaux circulaires, il était très étonné. Pour quoi? 6 points bleus.
Le résultat étonnant s'applique-t-il également à d'autres n-coins réguliers avec a = 4cm? Que doit être a pour que l'anneau circulaire ait une superficie de 1000 cm²? (3 + 3 points rouges)

esp

652

“En esta construcción también se esconde un secreto”, Mike tiene seguro. “Entonces estoy curioso por saber qué es”, responde Lisa.
Principalmente, Mike había dibujado un triángulo equilátero (a = 4 cm). Después había dibujado circunferencia y el círculo interior. Entre los dos círculos se manifestó un aro.
A continuación, hizo lo mismo con el cuadrado mostrado (a= 4 cm). Otra vez resultó un aro entre la circunferencia y el círculo interior. Al comparar las áreas de los dos aros estaba muy sorprendido. ¿Porqué? 6 puntos azules.
¿Este resultado sorprendente también vale para otros polígonos regulars con a= 4 cm? ¿Cuál valor debe tener a para que el aro resultante mida el área de 1000 cm²? 3+3 puntos rojos.

en

652

„This construction does hide a secret too.“, Mike is very sure. „I’m excited.“, answered Lisa.
Mike first drew an equilateral triangle (a = 4 cm). Then he drew the circumcircle and the inner circle of the triangle. Both created a ring. Next he did the same thing with the square shown in the picture on the left (a = 4cm). Again he got a ring out of circumcircle and inner circle. When he compared the areas of the rings he was quite astonished. Why? 6 blue points.
Is the astonishing result true for other n-edges with a = 4cm? How big must a be, if the ring should have an area of 1000 cm²? (3+3 red points)

it

652

“Anche dentro questa costruzione è nascosto un segreto”, Mike era convinto. “Allora sono curiosa”, rispondeva Lisa.
Mike aveva disegnato per primo un triangolo equilatero (a=4 cm) per poi costruire il suo circondario e cerchio interno. Questi due formano un anello circolare. Poi ha rifatto la stessa cosa col quadrato che vedete nel disegno (a = 4cm). E di nuovo ha ricevuto un anello circolare dal circondario e cerchio interno. Paragonando le aree dei due anelli circolari era molto stupefatto. Sai perchè? – 6 punti blu
Quel risultato stupefacente, vale anche per altri poligoni regolari con a=4 cm? È come si deve scegliere la misura di a perchè l’ anello circolare abbia un’ area di 1000 cm2 – 3+3 punti rossi.

Lösung/solution/soluzione/résultat:

Lösungen  von Ingmar Rubin --> pdf <-- ud Reinhold M.. danke

ich beginne wieder ich gleich allgemein.

Jedes reguläre n-Eck besitzt bekanntlich einen Mittelpunkt, der der gemeinsame Umkreis- und Inkreismittelpunkt ist, und lässt sich in n Dreiecke zerlegen, deren Eckpunkte jeweils zwei nebeneinanderliegende Eckpunkte des n-Ecks und der Mittelpunkt sind. Die Schenkel dieser gleichschenkligen Dreiecke haben die Länge des Umkreisradius ru, und ihre Höhe die des Inkreisradius ri. Damit gilt nach dem Satz des Pythagoras mit der Seitenlänge a des n-Ecks
 ri^2 + (a/2)^2 = ru^2
- die genauen Längen in Abhängigkeit von n benötigen wir also wieder nicht. Denn mit dem Umkreisinhalt Au
 Au = Pi ru^2
und dem Inkreisinhalt Ai
 Ai = Pi ri^2
folgt für den gesuchten Flächeninhalt des Kreisrings Ar
 Ar = Au - Ai
    = Pi (ru^2 - ri^2)
    = Pi (a/2)^2
    = Pi/4 a^2.
Die Flächeninhalte sind also für alle n gleich ("rot 1"), insbesondere auch beim gleichseitigen Dreieck und beim Quadrat, und zwar für a = 4 cm gleich 4 Pi, d.h. ca. 12,57 cm^2 ("blau").
Und aus
 Ar = 1000 cm^2
folgt
 a = Wurzel(4000/Pi) = 20 Wurzel(10/Pi),
d.h. a muss knapp 35,7 cm sein, damit der Flächeninhalt des Kreisrings 1000 cm^2 beträgt ("rot 2").


Aufgabe 5

Wertungsaufgabe 653

653 blau

„Das sieht aus wie ein buntes Quadrat mit Ohren“, sagte Maria zu ihrem Bruder Bernd. „Da hast du recht, aber darum soll es nicht gehen.“
ABCD ist ein Quadrat mit a = 10 cm. E und F halbieren die Seiten. EG = HF = x= 4 cm. Zum Schluss noch die Kreise mit jeweils r = 2 cm. Wie groß sind die Flächeninhalte der roten, gelben, blauen und grünen Flächen? (= prozentualer Anteil an der Fläche von ABCD) 10 blaue Punkte
Nimmt man zwei solcher Quadrate, so lässt sich durch „falten“ ein interessanter Körper „bauen“.

653 rot

Wie groß ist dessen Volumen – mit Herleitung einer Formel unter Verwendung von a, r und x gibt es 12 rote Punkte.

Termin der Abgabe 12.11.2020. Срок сдачи 12.11.2020.Ultimo termine di scadenza per l´invio è il 12.11.2020. Deadline for solution is the 12th. November 2020. Date limite pour la solution 12.11.2020. Soluciones hasta el 12.11.2020. Beadási határidő 2020.11.12.

rus

653 blau

«Это выглядит как пёстрый квадрат с ушами», сказала Мария своему брату Бернд. «Ты права, но не в этом дело».
ABCD является квадратом с длиной a = 10 см. E и F делят стороны пополам. EG = HF = x = 4 см. Наконец ещё круги - каждый с радиусом r = 2 см.
Какие значения имеют площади красных, жёлтых, синих и зелёных плоскостей (в процентных долях от площади ABCD)? 10 синих очков.
Если взять два таких квадрата, то из них можно путём «сложения» «построить» интересное тело.

653 rot
Какой у него объём ? — с выводом формулы, содержащей a, r и x получите 12 красных очков.

 hun

653 blau

„Ez úgy néz ki, mint egy színes négyzet fülekkel.“ –mondta Mária a bátyjának. „Igazad van, de nem erről van szó.“
ABCD egy a = 10 cm oldalú négyzet. E és F felezik az oldalakat. EG = HF = x= 4 cm. Végezetül a körök mindegyike r = 2 cm. Mekkora a területe a piros, sárga, kék és zöld területeknek? (Százalékos megadás az ABCD területének) 10 piros pont
Ha kettő ilyen négyszöget vesz az ember és meghajtogatja egy érdekes testet hozhat létre.

653 rot

Mekkora ennek a térfogata – egy képlet levezetésével a, r és x-ből 12 pontot ér.

fr

653 blau

"Cela ressemble à un carré coloré avec des oreilles", a déclaré Maria à son frère Bernd. "Tu as raison, mais ce n'est pas le point."
ABCD est un carré avec a = 10 cm. E et F coupent les côtés en deux. EG = HF = x = 4 cm. Enfin les cercles avec r = 2 cm chacun. Quelle est la superficie des zones rouges, jaunes, bleues et vertes? (= pourcentage de la surface de l'ABCD) 10 points bleus
Si on prend deux de ces carrés, on peut «construire» un corps intéressant en le «pliant».

653 rot

Quelle est son volume - si une formule est dérivée à l'aide de a, r et x, il y aura 12 points rouges.

esp

653 blau

“Esto se ve como un cuadrado colorido con orejas”, le dijo María a su hermano Bernd. “Tienes razón, pero el ejercicio tiene otro asunto.”
ABCD es un cuadrado con a = 10 cm. Los lados del cuadrado son partidos por la mitad por E y F. EG = HF = x = 4 cm. Al final se esbozan los círculos cada vez con r = 2 cm. ¿Qué tamaño tienen las áreas de los planos rojos, amarillos, azules y verdes? Se busca el tanto por ciento del plano del cuadrado ABCD. 10 puntos azules.

653 rot

Con dos semejantes cuadrados plegados se puede construir un cuerpo interesante. ¿De qué tamaño es su volumen? Para la derivación de una fórmula con a, r y x se reciben 12 puntos rojos.

en

653 blau

„ This looks like a colored square with ears“, Maria told her brother Bernd. „You are right. But that is not the point.“
ABCD is a square with a = 10 cm. E and F divide both sides in half. EG = HF = x= 4 cm. In the end we have the circles with r = 2 cm. How big are the areas of the red, yellow, blue and green fields? (= percentage of the area ABCD) 10 blue points.

653 rot

If you take two such squares, you can create an interesting figure through folding. How big is the volume – with a deduction of the formula using a, r and x you will get 12 red points.

it

653 blau

“Sembra essere un quadrato colorato con le orecchie”, Maria diceva a suo fretello Bernd. “Hai ragione, ma questo non importa.”
ABCD è un quadrato con a = 10 cm. E e F bisecano i lati. EG = HF = x = 4 cm. Alla fine I cherchi con r = 2 cm. Quale sono le aree delle superficie rosse, gialle, blu e verdi? (= percentuale della superficie di ABCD) – 10 punti blu
Prendendo due di questi quadrati, piegandole si può costruire un solido molto interessante.

653 rot

Qual’è il suo volume? – Con la derivazione della formula che contenga a, r e x vengono dati 12 punti rossi.

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Calvin, danke. --> pdf <--
Eine "deutlich einfachere" Formel für das Volumen lässt sich finden, wenn statt des Radius, gleich die Höhe des blauen Trapezes gegeben wird, wer Zeit hat, kann da ja mal drüber schauen.


Aufgabe 6

Wertungsaufgabe 654

654 (nach Anregung durch R. S.)

„Was hast du denn in deinem Beutel, das klappert ja doch sehr.“, frage Lisa ihren Freund Mike.
In dem Beutel befinden sich 10 Kugeln, die mit den Zahlen von 1 bis 10 nummeriert sind.
Eine Kugel wird gezogen. Wie groß ist die Wahrscheinlichkeit, dass es sich um eine Primzahl bzw. eine ungerade Zahl handelt.? (2 blaue Punkte) Zwei Kugeln, deren Zahlen direkt aufeinanderfolgen, werden vorher herausgenommen, dann wird die Frage noch mal gestellt. Die Antwort lautet dann, die Wahrscheinlichkeiten sind gleich. Welche Kugelpaare könnte man entfernen?- 2 rote Punkte für das Finden aller möglichen Paare.

Termin der Abgabe 19.11.2020. Срок сдачи 19.11.2020. Ultimo termine di scadenza per l´invio è il 19.11.2020. Deadline for solution is the 19th. November 2020. Date limite pour la solution 19.11.2020. Soluciones hasta el 19.11.2020. Beadási határidő 2020.11.19.

rus

«Что у тебя в твоём мешочке, ведь это уж очень стучит», спросила Лиза своего друга Майка.
В мешочке находятся 10 шариков, прономерованных числами с 1 до 10.
Вытаскивают один шарик. Какова вероятность, что на нём простое число или соответственно нечётное число? (2 синих очка)
Вытаскивают заранее два шарика с непосредственно последовательными номерами . Затем выше указанный вопрос ставится снова. Ответ гласит, что вероятности равны.
Какие пары шариков можно было удалить для такого ответа?
(2 красных очка, если найдёте все возможные пары.)

hun

„Mi van a táskádban, ami így zörög?” – kérdezte Liza a barátját, Mike-ot.
A táskában 10 golyó van, melyek 1-től 10-ig számozottak. Egy golyót kihúzunk. Mekkora a valószínűsége annak, hogy ez prímszám, vagy páratlan szám lesz. (2 kék pont)
Eztán két olyan golyót húzunk ki, melyek egymást követő számúak, aztán még egyszer feltesszük a kérdést. A válasz úgy hangzik, hogy a valószínűség egyforma. Melyik golyópárt húztuk ki? 2 piros pont minden lehetséges párért.

fr

(suite à la suggestion de R. S.)
"Qu'est-ce que tu as dans ton sac? Ça claque beaucoup." demanda Lisa à son ami Mike.
Il y a 10 boules dans le sac, numérotées de 1 à 10.
Une boule est retirée. Quelle est la probabilité que ce soit un nombre premier ou un nombre impair? (2 points bleus)
Deux boules dont les numéros se succèdent sont préalablement retirées du sac, puis la question est à nouveau posée, la réponse est alors que les probabilités sont égales.
Quelles paires de boules peut-on retirer? - 2 points rouges pour trouver toutes les paires possibles.

esp

(por inspiración de R. S.)
“¿Qué es lo que tienes en tu bolsa? Se nota el chacoloteo”, le preguntó Lisa a su amigo Mike.
En la bolsa están 10 bolas numerados de 1 a 10. Se saca una bola. ¿Cuál es la probabilidad que se trata de un número primo o bien un número impar? (2 puntos azules)
Ahora, antes de hacer la pregunta otra vez, se sacan dos bolas cuyos números se suceden directamente. La respuesta será que la probabilidad de sacar un número primo y la de sacar un número impar son iguales. ¿Cuáles parejas de bolas se podrían excluir? Por encontrar todas las parejas posibles se reciben 2 puntos rojos.

en

(after a suggestion from R. S.)
„What do you have in your bag, it really rattles.“, Lisa asked her friend Mike.
In the bag are 10 spheres, which are numbered with numbers from 1-10.
One sphere gets pulled out. How big is the probability, that it will be a prime number resp. an odd number? (2 blue points) Two spheres, whose numbers follow each other, are removed before, then the upper question is asked again. The answer then is, that the probabilities are the same. Which pairs of spheres could be removed?- 2 red points for finding all possible pairs.

it

(Secondo un’ idea di R.S.)
“Cosa hai in questo sachetto? Strepita parecchio.”, Lisa chiedeva a suo amico Mike.
Nel sacchetto si trovano 10 palline, numerate da 1 a 10. Viene tirato una delle palline. Con quale probabilità si tratta di un numero primo o dispari? – 2 punti blu.
Due palline, portando numeri seguenti, vengono tolti del sachetto, poi si rifa la domanda di prima e la risposta è che la probabilità non si è cambiata. Quale paia di palline si potrebbero togliere per questo? – 2 punti rossi per trovare tutti i paia possibili.

Lösung/solution/soluzione/résulta/Решениеt:

Unter den Zahlen 1; 2; ..., 10 gibt es vier Primzahlen: 2; 3; 5 und 7. Die Wahrscheinlichkeit also 4/10 = 40 %. Ungerade Zahlen sind es fünf: 1; 3; 5; 7; 9. Die Wahrscheinlichkeit also 5/10 = 50 %.
Enfernt man das Paar 9; 10, so verbleiben als Primzahlen 2; 3; 5 und 7 und als ungerade Zahlen 1; 3; 5; 7, somit liegt die Wahrscheinlichkeit für  das Ziehen einer Primzahl oder einer ungeraden Zahl bei je 50 %.
Enfernt man das Paar 8; 9, so verbleiben als Primzahlen 2; 3; 5 und 7 und als ungerade Zahlen 1; 3; 5; 7, somit liegt die Wahrscheinlichkeit für  das Ziehen einer Primzahl oder einer ungeraden Zahl bei je 50 %.
Bei jedem anderen denkbaren Paar verbleiben immer 4 ungerade Zahlen, aber nur 3 oder gar 2 Primzahlen. Somit ist die Wahrscheinlichkeit für  das Ziehen einer Primzahl oder einer ungeraden Zahl nicht gleich.


Aufgabe 7

Wertungsaufgabe 655

655

„Schau mal, ich habe in dem Dreieck ABC auf zwei Wegen das größte Quadrat konstruiert, unter der Bedingung, dass eine Seite des Quadrates auf der Seite AB liegt..“, sagte Bernd zu Mike.
Ist das Dreieck ABC, von dem Umfang und Flächeninhalt zu ermitteln sind, wirklich rechtwinklig (3+2+2 blaue Punkte)
Bernd hat zum einen das grüne Hilfsquadrat verwendet und zum anderen das blaue Quadrat und den Punkt L, der durch die Höhe ermittelt wird, genutzt.. Sind die beiden Konstruktionen nur im Beispieldreieck richtig oder gilt das für jedes Dreieck ABC? 7 rote Punkte für eine vollständige Beweisführung.

Termin der Abgabe 26.11.2020. Срок сдачи 26.11.2020. Ultimo termine di scadenza per l´invio è il 26.11.2020. Deadline for solution is the 26th. November 2020. Date limite pour la solution 26.11.2020. Soluciones hasta el 26.11.2020. Beadási határidő 2020.11.26.

rus

655

«Посмотри-ка, в треугольнике ABC я сконструировал двумя путями максимальный квадрат при условии, что одна сторона квадрата находится на стороне AB», сказал Бернд Майку.
Является ли треугольник ABC, для которого нужно определить периметр и площадь, действительно прямоугольным? (3+2+2 синих очков).
Бернд использовал с одной стороны зелёный вспомогательный квадрат и с другой стороны синий квадрат вместе с точкой L, которая определяется вершиной.
Правильны ли обе конструкции только для данного примера треугольника или имеет ли это место для каждого треугольника ABC? 7 красных очков для полного доказательства.

hun

655

„Nézd csak, az ABC háromszögben két módon is megszerkesztettem a legnagyobb négyszöget azzal e feltétellel, hogy egy oldala a négyszögnek az AB oldalon fekszik.” – mondta Bernd Mike-nak.
Az ABC háromszög kerületéből és területéből kiszámítva tényleg jobbszögű? (3+2+2 kék pont)
Bernd az egyikhez a zöld segédnégyszöget, a másikhoz a kék négyszöget és az L pontot, amely a csúcson halad át, használta. Mindkét szerkesztés csak a példaháromszögben helyes, vagy érvényes minden ABC háromszögre? 7 piros pont egy teljes igazolásért.

fr

655

Regardes, j'ai construit le plus grand carré du triangle ABC de deux manières, à condition qu'un côté du carré soit du côté AB .. », dit Bernd à Mike.
Le triangle ABC, à partir duquel la circonférence et l'aire doivent être déterminées, est-il vraiment rectangle ? (3 + 2 + 2 points bleus)
Bernd a utilisé le carré auxiliaire vert d'une part et le carré bleu et le point L, qui est déterminé par la hauteur, d'autre part. Les deux constructions sont-elles correctes uniquement dans l'exemple de triangle ou est-ce que cela s'applique à chaque triangle ABC? 7 points rouges pour une preuve complète.

esp

655

“Mira, aquí tengo un triángulo ABC. Dentro del triángulo, he construido el cuadrado más grande posible en dos maneras, bajo la condición de que un lado del cuadrado se encuentre al lado AB del triángulo”, le dijo Bernd a Mike.
Calcula área y perímetro del triángulo ABC y averigua si realmente esté rectangular. (3+2+2 puntos azules).
Por una parte, Bernd ha utilizado el cuadrado auxiliar verde y por otra parte ha trabajado con el cuadrado azul y el punto L que se averigua por la altura. ¿Las dos construcciones son correctas sólo en el ejemplo proyectado del triángulo ABC o son válidos para todos los triángulos ABC posibles? Para la prueba completa se reciben 7 puntos rojos.

en

655

„Look I constructed the biggest square inside the triangle ABC using two different ways. The condition was that that one side of the square lies on the line AB…”, Bernd told Mike.
Is the square ABC really right-angled? You have to find its area and perimeter too. (3+2+2 blue points)
Bernd on the one side used the green assistance square and on the other side the blue square and the point L, which gets calculated through the height. Are both constructions only true for the example triangle or for every triangle ABC? 7 redpoints for a full line of argument.

it

655

“Guarda, ho costruito in due modi diversi dentro il triangolo ABC il quadrato più grande nel modo che uno dei suoi lati sia situato sul lato AB.”, Bernd diceva a Mike. È veramente rettangolare il triangolo ABC, del quale siano da calcolare circonferenza e area? (3+2+2 punti blu).
Una volta, Bernd ha usato il quadrato verde e l’altra volta il quadrato blu più il punto L che si trova usando l’altezza. Queste due costruzioni, funzionano solo in quell caso particolare del triangolo esemplare o anche per triangoli ABC qualsiasi? – 7 punti rossi per un raziocinio complete.

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Hans, danke. --> pdf <--


Aufgabe 8

Wertungsaufgabe 656

656

„Das ist ein schöner Körper, den du gezeichnet hast.“, sagte Mike zu Bernd. „Ja, der gefällt mir auch, wobei ich zuerst einen noch etwas anderen hatte, beginnend mit einem Würfel statt des Prismas ABCDEF.“, erwiderte Bernd.
Wenn der Körper in der Mitte ein Würfel ist (a =10 cm) und alle Seitenflächen, die zu sehen sind, den gleichen Flächeninhalt haben sollen, wie groß sind dann die Oberfläche und das Volumen des zusammengesetzten Körpers? (2 + 4 blaue Punkte)
Wie groß sind die Oberfläche und das Volumen des abgebildeten Körpers, wenn AB=BS2=AS2= a = 10 cm lang ist und die Flächeninhalte aller sichtbaren Seitenflächen gleich groß sein sollen? - 6 rote Punkte

Termin der Abgabe 03.12.2020. Срок сдачи 03.12.2020. Ultimo termine di scadenza per l´invio è il 03.12.2020. Deadline for solution is the 3th. December 2020. Date limite pour la solution 03.12.2020. Soluciones hasta el 03.12.2020. Beadási határidő 2020.12.03.

rus

656

«Это красивое тело, которое ты нарисовал», сказал Майк Бернду. «Да, мне оно тоже нравится, причём сначала я предположил немного другое тело, начиная с кубиком вместо призмы ABCDEF», ответил Бернд.
Если тело в середине кубик (a =10 см) и все видимые боковые плоскости обладают одинаковой площадью, какие в таком случае значения имеют тогда поверхность и объём составного тела? (2 + 4 синих очков).
Каковы поверхность и объём изображённого тела, если AB =BS2=AS2= a = 10 см и площади всех видимых боковых плоскостей равны между собой? (6 красных очков). Все треугольники изображённого тела равносторонние.

hun

656

„Nagyon szép ez a test, amit rajzoltál.” – mondta Mike Berndnek. „Igen, nekem is tetszik, bár először másvalamit akartam elkezdeni egy kockával az ABCDEF hasáb helyett.” - válaszolta Bernd.
Ha a test a kocka közepén (a =10 cm) és minden látható oldalfelületnek egyforma a területe, mekkora a felülete és a térfogata az összeállított testnek? (2+4 kék pont)
Mekkora a felülete és a térfogata annak a testnek, amelynek AB=BS2=AS2= a = 10 cm hosszú és a területe minden látható oldalfelületnek egyenlő? 6 piros pont

fr

656

« C'est une belle figure que tu as dessiné. », dit Mike à Bernd. "Oui, j'aime ça aussi, même si au début j'en avais une légèrement différente, en commençant par un cube au lieu du prisme ABCDEF", a répondu Bernd.
Si la figure au milieu est un cube (a = 10 cm) et que toutes les surfaces latérales visibles doivent avoir la même surface, quelle est la surface et le volume de la figure assemblée? (2 + 4 points bleus)
Quelle est la taille de la surface et le volume de la figure représentée, si AB =BS2=AS2 = a = 10 cm et la surface de toutes les surfaces latérales visibles doit être la même? - 6 points rouges

esp

656

“Es un cuerpo bello que has esbozado”, le dijo Mike a Bernd. “Sí, a mí me gusta también a lo cual principalmente lo tenía un poco diferente, comenzado con un cubo en vez de un prisma ABCDEF”, replicó Bernd.
Si el cuerpo en el medio es un cubo (a = 10 cm) y todos los planos laterales visibles tienen el mismo área - ¿de qué tamaño son la superficie y el volumen del cuerpo compuesto? (2 + 4 puntos azules)
Si AB =BS2=AS2 = a = 10 cm y las áreas de todos los planos laterales visibles son del mismo tamaño, ¿cuánto miden el área y el volumen del cuerpo proyectado? 6 puntos rojos.

en

656

“That’s a nice figure, that you’ve drawn.”, Mike told Bernd. “Yes, I like it too, although I had a different one before, beginning with a cube instead of the prism ABCDEF.”, answered Bernd.
If the figure in the middle is a cube (a =10 cm) and all side areas, which are visible, should have the same area, how big would the face and the volume of the newly formed figure be? (2 + 4 points)
How big are face and volume of the pictured figure, if AB =BS2=AS2 = a = 10 cm and the area of all visible side areas have to be the same size? - 6 red points 

it

656

“Hai disegnato un bel solido”, Mike diceva a Bernd. “Piace anche a me; bensì per primo avevo uno diverso che invece col prisma ABCDEF iniziava con un cubo”, replicava Bernd.
Se il solido al centro è un cubo (a = 10 cm) e tutte le superficie laterali visibili devono avere la stessa area, quale sono poi la superficie ed il volume del solido composto? – 2 + 4 punti blu
Quale sono la superficie ed il volume del solido mostrato nel disegno, nel caso che sia AB=BS2=AS2 = a = 10 cm e che tutte le superficie laterali visibili abbiano la stessa misura? – 6 punti rossi

Lösung/solution/soluzione/résultat/Решение:

Musterlösungen von Paulchen --> pdf <-- und Reinhold M, danke
im Fall des Würfels als Mittelkörper hat jede Seitenfläche des Würfels und damit jede Seitenfläche des Gesamtkörpers den Flächeninhalt A1
 A1 = a^2,
und der Gesamtkörper wird durch 12 gleichgroße Flächen begrenzt - 4 Quadrate und 2 * 4 = 8 Dreiecke -, so dass für seine Oberfläche Ablau
 Ablau = 12 A1 = 12 a^2
gilt. Da jedes der 8 Dreiecke die gleiche Grundlinie a und den gleichen Flächeninhalt A1 = a^2 hat, ist auch die Höhe h1 zur Spitze S1 bzw. S2 für alle Dreiecke gleichlang, und mit
 A1 = 1/2 a h1
folgt
 h1 = 2a.
Sei nun beispielsweise M2 der Fußpunkt der Höhe h2 der unteren Pyramide in S2 und A' der Fußpunkt der Höhe h1 des Dreiecks AS2B in S2, so gilt (Pythagoras)
 h2^2 + M2A'^2 = h1^2.
Da diese Argumentation für alle Seiten gilt, liegt also M2 im Mittelpunkt des Basisquadrats der Pyramide - analog natürlich auch bei der oberen - (die Pyramiden sind also gerade, alle Dreiecke sind gleichschenklig), so dass
 M2A' = a/2
und damit
 h2 = Wurzel(h1^2 - M2A'^2) = Wurzel((2a)^2 - (a/2)^2) = 1/2 Wurzel(15) a
folgt. Das Volumen VP4 einer Pyramide ist damit
 VP4 = 1/3 A1 h2 = 1/6 Wurzel(15) a^3
und mit dem Würfelvolumen
 VW = a^3
das Volumen Vblau des Gesamtkörpers
 Vblau = VW + 2 VP4 = 1/3 (3 + Wurzel(15)) a^3.
Im Würfelfall sind also der Oberflächeninhalt Ablau des zusammengesetzten Körpers 1200 cm^2 und sein Volumen Vblau 1000/3 (3 + Wurzel(15)), d.h. ca. 2290,994 cm^3.

Im abgebildeten Fall haben wie oben alle hier 6 Seitendreiecke die gleiche Grundlinie a und den gleichen Flächeninhalt, also auch gleichlange Höhen h1 - ich verwende teilweise die selben Bezeichnungen wie oben -, und zunächst ist bekannt, dass das Dreieck AS2B gleichseitig ist, so dass (Pythagoras)
 h1 = Wurzel(a^2 - (a/2)^2) = 1/2 Wurzel(3) a
folgt. Damit gilt für den Flächeninhalt A1 aller 6 Dreiecke und damit auch aller 3 Rechtecke
 A1 = 1/2 a h1 = 1/4 Wurzel(3) a^2.
Damit folgt zunächst für die Oberfläche Arot des Gesamtkörpers
 Arot = 9 A1 = 9/4 Wurzel(3) a^2.
Weiter folgt analog oben mit beispielsweise dem Fußpunkt M2 der Höhe h2 der unteren Pyramide in S2 und dem Fußpunkt A' der Höhe h1 des Dreiecks AS2B in S2 (Pythagoras)
 h2^2 + M2A'^2 = h1^2.
Da diese Argumentation für alle Seiten gilt, liegt also M2 im Mittelpunkt des gleichseitigen Basisdreiecks der Pyramide - analog natürlich auch bei der oberen - (die Pyramiden sind also reguläre Tetraeder, alle Dreiecke sind gleichseitig), so dass - ABC hat die gleiche Höhe h1 wie die identischen Seitendreiecke, und alle Höhen schneiden sich in einem Punkt, der die Höhen im Verhältnis 1:2 teilt -
 M2A' = 1/3 h1 = 1/6 Wurzel(3) a
und damit
 h2 = Wurzel(h1^2 - M2A'^2) = Wurzel(3/4 a^2 - 1/12 a^2) = 1/3 Wurzel(6) a
folgt. Das Volumen VP3 einer Pyramide ist damit
 VP3 = 1/3 A1 h2 = 1/12 Wurzel(2) a^3.
Weiter gilt mit der Höhe b = BE = CF = AD des dreiseitigen Prismas für den Inhalt der rechteckigen Seitenflächen
 A1 = 1/4 Wurzel(3) a^2 = a b,
folglich
 b = 1/4 Wurzel(3) a.
Demzufolge gilt für das Volumen VP des Prismas ABCDEF
 VP = A1 b = 3/16 a^3
und das Volumen Vrot des Gesamtkörpers
 Vrot = VP + 2 VP3 = 1/48 (9 + 8 Wurzel(2)) a^3.
Im abgebildeten Fall sind also der Oberflächeninhalt Arot des zusammengesetzten Körpers 225 Wurzel(3), d.h. ca. 389,71 cm^2, und sein Volumen Vrot 125/6 (9 + 8 Wurzel(2)), d.h. ca. 423,202 cm^3.


Aufgabe 9

Wertungsaufgabe 657

657

„Schau mal Mike, ich habe in ein Koordinatensystem ein großes Trapez gezeichnet. Aus den Koordinaten der Punkte K und I sind die Radien der Kreise ableitbar. M_a und M_c sind Mittelpunkte.“, sagte Bernd. „Das mache ich gleich auch mal.“
Da man die Koordinaten aus dem Bild ablesen kann und nutzen darf, ist die Ermittlung des Flächeninhaltes des Trapezes ganz einfach. Zusammen mit den Gleichungen der linearen Funktionen, die sich in X schneiden, bringt das 6 blaue Punkte.
Der Punkt X ist ein besonderer Punkt des Trapezes. Welche Besonderheit „besitzt“ dieser Punkt und kann man die Konstruktion eines solchen besonderen Punktes X in jedem Trapez vornehmen? (6 rote Punkte)

Termin der Abgabe 10.12.2020. Срок сдачи 10.12.2020. Ultimo termine di scadenza per l´invio è il 10.12.2020. Deadline for solution is the 10th. December 2020. Date limite pour la solution 10.12.2020. Soluciones hasta el 10.12.2020. Beadási határidő 2020.12.10.

rus

657

"Смотри-ка Майк, я нарисовал большую трапецию в координатную систему. Из координат точек K и I можно определить радиусы кругов. M_a и M_c являются серединами сторон», сказал Бернд. « Я это сейчас тоже нарисую», ответил Майк.
Определение площади трапеции очень просто, так как его координаты можно снимать из рисунка и разрешается их использовать. Вместе с уравнениями линейных функций, которые пересекаются в точке Х, это награждается 6 синими очками.
Точка Х является особой точкой трапеции. Какой особенностью «обладает» эта точка и возможно ли реализовать конструкцию такой особой точки в каждой трапеции? (6 красных очков).

hun

657

„Nézd csak Mike, rajzoltam a koordináta rendszerbe egy nagy trapézt. A K és az I pontok koordinátáiból a körök sugarai levezethetők. Az M_a és az M_c a középpontok” – mondta Mike. „Na, ezt megcsinálom én is mindjárt.”
Mivel a koordinátákat az ábráról le lehet olvasni és használni, a trapéz területének megadása egész egyszerű. Együtt az egyenesek egyenletével melyek az X pontban metszik egymást, 6 kék pontot ér.
Az X pont különleges pontja a trapéznak. Mely különlegességgel bír ez a pont és meg lehet-e szerkeszteni egy ilyen különleges X pontot minden trapéz esetén? (6 piros pont)

fr

657

"Regardes Mike, j'ai dessiné un grand trapèze dans un système de coordonnées. Les rayons des cercles peuvent être dérivés des coordonnées des points K et I. M_a et M_c sont des points centraux", a déclaré Bernd.
"Je vais faire pareil."
Puisque on peut lire les coordonnées de l'image et qu'on est autorisé à les utiliser, la détermination de la surface du trapèze est très facile. Avec les équations des fonctions linéaires qui se coupent en X, cela donnera 6 points bleus.
Le point X est un point spécial du trapèze. Quelle est la particularité de ce point et est-il possible de construire un tel point spécial X dans n'importe quel trapèze? (6 points rouges)

esp

657

“Mira, Mike – he esbozado un trapecio grande en un sistema de coordenadas. Se pueden derivar los radios de los círculos de las coordenadas de los puntos K y I. Los puntos centrales son M_a y M_c”, dijo Bernd. “Esto voy a hacer también justamente.”
Puesto que se pueden notar y usar las coordenadas en la proyección, el cálculo del área del trapecio es muy fácil. Junto con las ecuaciones de las funciones lineales que se cruzan en X, esto produce 6 puntos azules.
El punto X es un punto particular del trapecio. ¿Cuál particularidad tiene este punto? Y ¿se puede construir semejante punto X en cada trapecio posible? 6 puntos rojos.

en

657

“Look Mike, I drew a big trapezium into a coordinate system. From the points coordinates K and I the circle radii can be deduced. M_a and M_c are the centre.”, said Bernd. “I‘ll have a try myself.”
Since you can get the coordinates from the picture, the calculation of the trapezium area is easy. Together with the equation of the linear function, which crosses X, you get 6 blue points.
Point X is a special trapezium point. Which characteristics does this point have and can you construct such a point X in every trapezium? (6 red points)

it

657

“Guarda, Mike, ho disegnato un trapezio grande dentro un sistema di coordinate. Dai coordinati dei punti K e I si possono derivare i raggi dei cerchi. M_a e M_c sono i loro centri.”, diceva Bernd. “Lo rifaccio anch’io”.
Dato che le coordinate di possono leggere facilmente dal disegno e che è lecito di usarle, è facile trovare l’ area del trapezio. Insieme alle equazioni delle funzioni lineari che si intersecano in x, quello porta 6 punti blu.
Il punto x è un punto molto speciale del trapezio. Qual’è la sua particolarità ed è possible costruire un tale punto in un trapezio qualsiasi? – 6 punti rossi

Lösung/solution/soluzione/résultat/Решение:

 Musterlösung von Birgit Grimmeisen, danke. --> pdf <--


Aufgabe 10

Wertungsaufgabe 658

„Übst du Bruchrechnung?“, fragte Lisa. „Bei der ersten Aufgabe sieht das so aus, auch wenn natürliche Zahlen gesucht sind, aber bei der zweiten Aufgabe liegst du richtig.“, erwiderte Maria.
Gesucht sind die natürlichen Zahlen a, b und c, für die a+b+c=972 gilt. Weiterhin gilt.: b = 3+ a/3 und c = 3 + b/3 Für das Berechnen der Zahlen a, b, c gibt es 3 blaue Punkte, auch wenn sie möglicherweise keine natürlichen Zahlen sind.
4 rote Punkte gibt es, wenn gezeigt wird, dass (x ungleich y) die Gleichung gilt (oder auch nicht).

658 

Termin der Abgabe 17.12.2020. Срок сдачи 17.12.2020. Ultimo termine di scadenza per l´invio è il 17.12.2020. Deadline for solution is the 17th. December 2020. Date limite pour la solution 17.12.2020. Soluciones hasta el 17.12.2020. Beadási határidő 2020.12.17.

rus

«Тренируешь ли ты исчисление дробей?», спросила Лиза. «У первой задачи так выглядит, хотя и ищут натуральные числа, но при второй задачe ты права», ответила Мария.
Искомы те натуральные числа a, b и c, для которых имеет место a+b+c=972. Кроме того имеет место: b = 3+ a/3 и c = 3 + b/3. Для вычисления чисел a, b, c вы получите 3 синих очка, даже если они быть может не являются натуральными числами.
Вы получите 4 красных очка, если покажете, что имеет место равенство

658

(x неравно y) (или если покажете, что это равенство не имеет место).

hun

„Gyakorlod a törtekkel számolást?“ – kérdezte Lisa. „Az első feladatnál úgy néz ki még ha természetes számokat keresünk is, de a második feladatnál helyesen gondolod.“ – válaszolta Mária.
Keressük azokat az a, b és c termésetes számokat, amelyekre érvényes: a+b+c=972, továbbá: b = 3+ a/3 und c = 3 + b/3. Az a, b és c számok kiszámításáért 3 kék pont jár, az is lehetséges, hogy nem természetes számok.
4 piros pontot kap, ha bebizonyítja, hogy az egyenlet érvényes (vagy pedig nem).

658

fr

"Tu pratique les fractions?" demanda Lisa. "Cela ressemble à ceci avec la première tâche, même si des nombres naturels sont recherchés, mais tu as raison avec la deuxième tâche", répondit Maria.
Nous recherchons les nombres entiers naturels a, b et c, auxquels s'applique a + b + c = 972. De plus: b = 3+ a / 3 et c = 3 + b / 3. Il y aura 3 points bleus pour calculer les nombres a, b, c, même s'il ne s'agit pas de nombres naturels.
Il y aura 4 points rouges quand il est montré que (x différent de y) l'équation s'applique (ou pas).

658

esp

“Estás practicando el cálculo de fracciones?”, preguntó Lisa. “En el primer problema solo se ve así, porque de verdad se buscan números naturales. Pero en el caso del segundo problema tienes razón”, repuso María.
Se buscan los números naturales a, b y c, para los que todos tiene validez a + b + c = 972. Además, es válido: b = 3 + a / 3 y c = 3 + b / 3. Para el cálculo de los números a, b y c se reciben 3 puntos azules, incluso si posiblemente no son números naturales. Se rinden 4 puntos rojos con la prueba que (x desigual a y) es válida la siguiente ecuación o no. 

658

en

“Are you training fraction arithmetic?”, asked Lisa. “At the first problem it looks like this, even when you look for whole numbers, but with the second problem you are right.”, answered Maria. We are looking for whole numbers a, b and c, for which a+b+c=972 is true. Furthermore it should be true.: b = 3+ a/3 and c = 3 + b/3.
For calculating the numbers a, b, c you will get 3 blue points, even if they possibly are no whole numbers.
4 red points you will get, if you show, that (x unequal y) the following equation is true (or not).

658

it

“Stai esercitando il calcolo con frazioni?”, Lisa chiedeva. “Nel primo problema sembra di sì, ma invece si cercano numeri naturali, ma per il secondo problema hai ragione.”, Maria replicava.
Si cercano numeri naturali a, b e c, per le quali sia a+b+c=972. Inoltre sia: b = 3+a/3 e c = 3 + b/3. Per la calcolazione dei numeri a, b e c vengono dati 3 punti blu, anche se forse non siano numeri naturali.
Si ricevano 4 punti rossi, dimostrando che (x ineguale a y) l’ equazione seguent sia giusto (o anche no).

658

Lösung/solution/soluzione/résultat/Решение:

Lösung von Magdalena mit großem "Geschütz": --> pdf <--, danke
Und Alexander Wolf.

Blau:

b = 3 + a/3
c = 3 + b/3 = 3 + (3 + a/3)/3
a + b + c = 972
=> a + (3 + a/3) + (3 + (3 + a/3)/3) = 972
=> a + 3 + a/3 + 3 + 1 + a/9 = 972
=> 13/9a + 7 = 972
=> a = 668,077
b = 3 + a/3 = 225,692
c = 3 + b/3 = 78,231

a+b+c = 972

Rot:
(1/(x-y) + 1/(x+y)) / ((1/(x-y) - 1/(x+y)))
= (((x+y)+(x-y))/((x-y)(x+y))) / (((x+y)-(x-y))/((x-y)(x+y)))
= ((x+y)+(x-y)) / ((x+y)-(x-y))
= (2x) / (2y)
= x/y
q.e.d.


Aufgabe 11

Wertungsaufgabe 659

659

„Wie du sehen kannst, habe ich das berühmte Dreieck des Pythagoras in ein Koordinatensystem gezeichnet.“, sagte Mike zu Maria.
„Sollen die grünen Dreiecke gleichseitig sein?“, fragte Maria. „Aber ja“.
Wie groß sind Flächeninhalt und Umfang des Sechsecks AFBDCE? (4+2) blaue Punkte.
Der Punkt G (Schnittpunkt der Geraden AD, BE und CF) erzeugt die Dreiecke ABG, BCG und CAG. Nachzuweisen ist, dass die Winkel dieser Dreiecke, die den Punkt G gemeinsam haben, gleich groß sind (oder auch nicht). Der Punkt G ist ein „besonderer“ Punkt des Dreiecks und hat einen berühmten Namen – welchen? (5+1) rote Punkte.

Termin der Abgabe 07.01.2021. Срок сдачи 07.01.2021. Ultimo termine di scadenza per l´invio è il 07.01.1921. Deadline for solution is the 7th. January 2021. Date limite pour la solution 07.01.2021. Soluciones hasta el 07.01.2021. Beadási határidő 2021.01.07.

rus

659

«Как ты можешь видеть, я нарисовал знаменитый треугольник Пифагора в координатную систему», сказал Майк к Марие. «Являются зелёные треугольники равносторонними?», спросила Мария. «Ну конечно.»
Какова площадь и периметр шестиугольника AFBDCE? (4+2) синих очка.
Точка G ведёт к треугольникам ABG, BCG и CAG. Покажите, что углы этих треугольников, которые имеют сообща точку G, равны (или нет).
Точка G - «особенная» , какая особенность у ней? (5+1) красное очко.

hun

659

Amint láthatod megszerkesztettem Pythagoras híres háromszögét egy koordináta rendszerben“ – mondta Mike Máriának. „A kék háromszögek egyenlő oldalúak?“ – kérdezte Mária. „Igen“.
Mekkora a területe és a kerülete az AFBDCE hatszögnek? (4+2 kék pont)
A G pont vezet az ABG, BCG és CAG háromszögekhez. Bizonyítsa be, vagy cáfolja meg, hogy ezen háromszögek G ponttal közös szöge egyenlő nagyságú. A G pont „különleges“ pontja a háromszögeknek és van egy ismert neve is, mi ez? 5+1 piros pont

fr

659

"Comme tu peux le voir, j'ai dessiné le fameux triangle de Pythagore dans un système de coordonnées. " dit Mike à Maria.
"Les triangles verts devraient-ils être équilatéraux?", a demandé Maria. "Mais oui".
Quelle est la superficie et le périmètre de l'hexagone AFBDCE? (4 + 2) points bleus.
Le point G conduit aux triangles ABG, BCG et CAG. Il faut prouver que les angles de ces triangles, qui ont le point G en commun, sont égaux (ou pas). Le point G est un point «spécial» du triangle et porte un nom célèbre - lequel? (5 + 1) points rouges.

esp

659

“Cómo lo puedes ver, he esbozado el famoso triángulo de Pitágoras en un sistema de coordenadas”, le dijo Mike a María. “Pues sí.”
¿Cuánto miden el área y el perímetro del hexágono AFBDCE? (4+2 puntos azules).
El punto G conduce a los triángulos ABG, BCG y CAG. Hay que comprobar que son del mismo tamaño (o no) los ángulos de los triángulos que tienen en común el punto G. El punto G es un punto particular del triángulo y tiene un nombre famoso – ¿cuál es? (5+1 puntos rojos)

en

659

“As you can see, I drew the famous Pythagoras triangle into a coordinate system.”, Mike told Maria.
“Shall the green trangles be equilateral?”, asked Maria. „Of cause“.
How big are area and perimeter of the hexagon AFBDCE? (4+2) blue points.
Point G leads to the triangles ABG, BCG and CAG. You have to proof, that the angles of those triangles, which all have the same point G in common, are of the same size (or not). Point G is a “special” point of the triangle and has a famous name – which? (5+1) red points.

it

659

„Come vedi, ho disegnato il famoso teorema di pitagora in un sistema di coordinate”, Mike diceva a Maria. “Sono eqilateri i triangoli verdi?”, chiedeva Maria. – “Ma sì!”
Quale sono la superficie e la circonferenza dell’ esagono AFBDCE? – 4 + 2 punti blu
Il punto G guida ai triangoli ABG, BCG e CAG. È da dimostrare che gli angoli dei triangoli che hanno il punto G in comune siano uguali. Il punto G è un punto particolare del triangolo ABC? ed ha un nome famoso – quale? – 5 + 1 punti rossi.

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Karlludwig (es gab auch andere Wege), danke. --> pdf <--


Aufgabe 12

Wertungsaufgabe 660

Dürerbuchstabe

660 c

„Da hast du ja ein schönes C konstruiert..“, sagte Mike zu Lisa. „Mir gefällt es auch, es gibt verschiedene Varianten bei Dürer zu finden. Ich abe mich für diese Variante entschieden.“, erwiderte Lisa.
Wie immer beginnt es mit einem Quadrat ABCD (hier ist a = 10 cm). Oben und unten sind parallele Linien mit dem Abstand a/30 zu erkennen. Die senkrechte Linie auf der rechten Seite ist a/10 von F entfernt.. E und F sind die Mittelpunkte ihrer Quadratseiten. Die Radien der großen Kreise um M1 bzw. M2 sind gleich groß. Der Abstand der Mittelpunkt ist a/10 groß.
M1, M2 und C bilden ein Dreieck. Wie groß sind Flächeninhalt und Umfang dieses Dreiecks. 4 blaue Punkte. Wie groß ist Umfang und Flächeninhalt des C? - 12 rote Punkte.

Termin der Abgabe 14.01.2021. Срок сдачи 14.01.2021. Ultimo termine di scadenza per l´invio è il 14.01.1921. Deadline for solution is the 14th. January 2021. Date limite pour la solution 14.01.2021. Soluciones hasta el 14.01.2021. Beadási határidő 2021.01.14.

rus

660 c

«Там ты построила красивый C», сказал Майк к Лизе. «Мне он тоже нравится. У Дюрера можно найти разные варианты. Я выбрала этот вариант», ответила Лиза.
Как всегда конструкция начинается с квадратом ABCD (здесь а = 10 см). Наверху и внизу можно увидеть параллельные линии с расстоянием a/30. Вертикальная линия на правой стороне отстоит a/10 от F. E и F - центры своих сторон квадрата. Радиусы больших окружностей вокруг точек M1 и соответственно M2 равны между собой. Расстояние между центрами M1 и M2 равно a/10. M1, M2 и C образуют треугольник.
Какую величину имеют площадь и периметр этого треугольника? 4 синих очкa.
Какую величину имеют периметр и площадь буквы C? 12 красных очек.

hun

660 c

„Szép C-t szerkesztettél.” – mondta Mike Lisának. „Nekem is tetszik, ráadásul különböző változatokat is lehet találni Dürertől. De én emellett döntöttem.” – válaszolta Lisa.
Mint mindig egy ABCD négyszöggel (itt a = 10 cm) kezdjük el. Fent és lent párhuzamos vonalak láthatók, távolságuk a/30. A függőleges vonal a jobb oldalon F-től a/10 távolságra van. E és F az oldalak középpontjai. A nagy körök sugara M1 és M2 körül egyenlő nagyságú. A középpont távolsága a/10. M1, M2 és C háromszöget képeznek. Mekkora a területe és kerülete ennek a háromszögnek? Mekkora a kerülete és területe a C betűnek? 12 piros pont

fr

Lettre de Dürer

660 c
"Tu as fait un joli C .. ", dit Mike à Lisa. «J'aime aussi le fait qu'il existe différentes versions chez Dürer. J'ai choisi cette variante. », a répondu Lisa.
Comme toujours, il commence par un carré ABCD (ici a = 10 cm). Au-dessus et au-dessous des lignes parallèles avec une distance de a/30 peuvent être vues. La ligne verticale sur la droite est à a/10 de F.
E et F sont les milieux de leurs côtés du carré. Les rayons des grands cercles autour de M1 et M2 sont les mêmes. La distance entre les centres est de a/10.
M1, M2 et C forment un triangle. Quelle est l'aire et le périmètre de ce triangle? 4 points bleus.
Quelle est la circonférence et l'aire du C? - 12 points rouges.

esp

660 c

„Has construido un C hermoso…” le dijo Mike a Lisa. “A mí me gusta también. Dürer nos enseña maneras distintas. Me he decidido para esta versión”, repuso Lisa. Como siempre, se comienza con un cuadrado ABCD (aquí a=10cm). Arriba y abajo se identifican líneas paralelas a una distancia de a/30. La línea vertical al lado derecho está a una distancia de a/10 de F. E y F cada uno son los puntos centrales del lado del cuadrado correspondiente. Los radios de los círculos grandes alrededor de M1 o sea M2 son del mismo tamaño. La distancia entre los puntos centrales mide a/10.
M1, M2 y C forman un triángulo. ¿Qué grande son área y perímetro del triángulo? - 4 puntos azules. ¿Cuánto miden perímetro y área del C? – 12 puntos rojos.

en

Dürer letter

660 c

“ You have constructed a nice C”, Mike told Lisa. “I like it too. There are different varieties which Dürer drew. I chose this variety.”, answered Lisa.
As always we start with a square ABCD (here a = 10 cm). At the top and at the bottom are parallel lines with the distance a/30. The perpendicular line on the right side is a/10 away from F. E and F are the centers of their square sides. The radii of the big circles around M1 resp. M2 are of the same size. The distance of the centers are a/10.
M1, M2 and C form a triangle. How big are area and perimeter of this triangle? 4 blue points. How big are area and perimeter of C? - 12 red points.

it
Lettera di Dürer

660 c

„Hai costruito un bel C.”, Mike diceva a Lisa. “Piace anche a me; Dürer ne ha fatto diverse varianti. Io ho scelto quella lì.”, Lisa replicava.
Come sempre, inizia con un quadrato ABCD (in questo caso a = 10 cm). In alto ed in basso ci sono parallele in una distanza di a/30. E e F sono i centri dei lati del quadrato. La linea perpendicolare a destra ha una distanza di a/10 dal Punto F. La distanza di M1 e M2 è a/10. I raggi dei cerchi grandi coi centri M1 e M2 sono uguali.
M1, M2 e C formano un triangolo. Quale sono l’area e la circonferenza di questo triangolo? - 4 punti blu
Quale sono l’area e la circonferenza del C? – 12 punti rossi

Lösung/solution/soluzione/résultat/Решение:

 Musterlösungen von Magdalene --> pdf <-- und calvin --> pdf <--, danke.
Die rote Aufgabe hatte es durchaus in sich.


Auswertung Serie 55

 Die Buchpreise gehen an Calvin, Hans und Grisu1712, herzlichen Glückwunsch.

Auswertung Serie 55 (rote Liste)

Platz Name Ort Summe Aufgabe
  649 650 651 652 653 654 655 656 657 658 659 660
1. Magdalene Chemnitz 83 6 6 10 6 12 2 7 6 6 4 6 12
1. Karlludwig Cottbus 83 6 6 10 6 12 2 7 6 6 4 6 12
1. HeLoh Berlin 83 6 6 10 6 12 2 7 6 6 4 6 12
1. Grisu1712 Bietigheim-Bissingen 83 6 6 10 6 12 2 7 6 6 4 6 12
1. Reinhold M. Leipzig 83 6 6 10 6 12 2 7 6 6 4 6 12
1. Calvin Crafty Wallenhorst 83 6 6 10 6 12 2 7 6 6 4 6 12
1. Paulchen Hunter Heidelberg 83 6 6 10 6 12 2 7 6 6 4 6 12
1. Birgit Grimmeisen Lahntal 83 6 6 10 6 12 2 7 6 6 4 6 12
1. Maximilian Jena 83 6 6 10 6 12 2 7 6 6 4 6 12
2. Hans Amstetten 82 6 6 10 6 12 1 7 6 6 4 6 12
3. Hirvi Bremerhaven 80 6 6 10 6 9 2 7 6 6 4 6 12
4. Dana Ingolstadt 79 6 6 10 6 10 2 5 6 6 4 6 12
5. Alexander Wolf Aachen 77 6 6 10 6 11 2 6 6 4 4 4 12
6. Albert A. Plauen 74 6 6 10 6 12 2 7 6 - 4 6 9
7. Gerhard Palme Schwabmünchen 71 - 6 10 6 12 2 7 6 6 4 6 6
8. Axel Kästner Chemnitz 70 6 6 - 6 11 2 6 6 6 4 5 12
9. Frank R. Leipzig 61 6 6 - 6 10 2 7 6 6 4 - 8
10. Günter S. Hennef 55 - 6 - 6 - 2 7 6 6 4 6 12
11. Kurt Schmidt Berlin 51 5 6 - 6 10 2 6 4 - - - 12
12. Ingmar Rubin Berlin 47 - 6 10 6 - - - - 3 4 6 12
13. Linus-Valentin Lohs Chemnitz 45 6 6 10 6 - 2 - 6 - 4 5 -
14. Harald Schreiber Köln 40 - - - - - - 7 6 6 3 6 12
15. Helmut Schneider Su-Ro 32 - 6 10 6 - 2 4 - - 4 - -
16. Katja Seidel Chemnitz 27 - - - - - 2 3 6 6 4 6 -
17. Siegfried Herrmann Greiz 19 - - - 3 - 2 7 - - 3 4 -
18. Janet A. Chemnitz 17 6 6 - - - 1 - - - 4 - -
18. Laura Jane Abai Chemnitz 17 6 6 - - - 1 - - - 4 - -
19. Petar H. Neuwied 16 6 - 10 - - - - - - - - -
19. Othmar Z. Weimar (Lahn) 16 6 - 10 - - - - - - - - -
20. Alexandra Höfner Chemnitz 14 - 6 8 - - - - - - - - -
20. Ronja Kempe Chemnitz 14 6 6 - - - 2 - - - - - -
21. Ronja Schobner Chemnitz 13 - - - - 4 - - 6 3 - - -
21. Reka W. Siegerland 13 6 - - 6 - 1 - - - - - -
22. Bernd Berlin 12 - 6 - - - 1 - - 1 4 - -
23. Nagy-Balo Andras Budapest 10 - - - 6 - - - - - 4 - -
23. Sebastian Z Pirna 10 - - 10 - - - - - - - - -
24. Christian Meißner Chemnitz 9 - - - - - - - - - 4 5 -
25. Helene Kübeck Chemnitz 8 - 6 - - - 2 - - - - - -
25. Tabea Raupach Chemnitz 8 - 6 - - - 2 - - - - - -
26. Felix Helmert Chemnitz 6 6 - - - - - - - - - - -
26. Marie-Sophie Roß Chemnitz 6 6 - - - - - - - - - - -
26. Volker Bertram Wefensleben 6 - - - - - - - - - - 6 -
26. Luca Sindel Schrobenhausen 6 6 - - - - - - - - - - -
26. Sarah Badaoui Frankfurt/Main 6 6 - - - - - - - - - - -
26. Emily Seidel Chemnitz 6 - - - - - - - 6 - - - -
26. Andree Dammann Muenchen 6 - - - - - 2 - - - 4 - -
27. Luise Schlenkrich Chemnitz 4 - - - - - - - - - 4 - -
28. Dominique Böttinger Chemnitz 2 - - - 2 - - - - - - - -
28.     2 - - - - - 2 - - - - - -
28. Linnea Böhm Chemnitz 2 - - - - - 2 - - - - - -
28. Henry Hasenknopf Chemnitz 2 - - - - - 2 - - - - - -
28. Paula Rauschenbach Chemnitz 2 - - - - - 2 - - - - - -
29. Liuba Bässler Chemnitz 1 - - - - - 1 - - - - - -
29. Christian Carda Schorndorf 1 - - - - - 1 - - - - - -

 

Auswertung Serie 55 (blaue Liste)

Platz Name Ort Summe Aufgabe
  649 650 651 652 653 654 655 656 657 658 659 660
1. Grisu1712 Bietigheim-Bissingen 67 6 5 6 6 10 2 7 6 6 3 6 4
1. Linus-Valentin Lohs Chemnitz 67 6 5 6 6 10 2 7 6 6 3 6 4
1. Hans Amstetten 67 6 5 6 6 10 2 7 6 6 3 6 4
1. Magdalene Chemnitz 67 6 5 6 6 10 2 7 6 6 3 6 4
1. Dana Ingolstadt 67 6 5 6 6 10 2 7 6 6 3 6 4
1. Paulchen Hunter Heidelberg 67 6 5 6 6 10 2 7 6 6 3 6 4
1. Calvin Crafty Wallenhorst 67 6 5 6 6 10 2 7 6 6 3 6 4
1. Alexander Wolf Aachen 67 6 5 6 6 10 2 7 6 6 3 6 4
1. Karlludwig Cottbus 67 6 5 6 6 10 2 7 6 6 3 6 4
1. Reinhold M. Leipzig 67 6 5 6 6 10 2 7 6 6 3 6 4
2. Birgit Grimmeisen Lahntal 66 6 4 6 6 10 2 7 6 6 3 6 4
2. Axel Kästner Chemnitz 66 6 5 6 6 10 2 7 5 6 3 6 4
2. HeLoh Berlin 66 6 5 6 6 10 2 7 6 6 3 5 4
2. Maximilian Jena 66 6 5 6 6 10 2 7 6 5 3 6 4
3. Hirvi Bremerhaven 64 6 5 6 6 9 2 7 6 6 3 4 4
4. Gerhard Palme Schwabmünchen 61 - 5 6 6 10 2 7 6 6 3 6 4
5. Kurt Schmidt Berlin 59 6 5 6 6 10 2 6 4 4 - 6 4
5. Janet A. Chemnitz 59 6 5 6 6 10 1 7 5 - 3 6 4
5. Laura Jane Abai Chemnitz 59 6 5 6 6 10 1 7 5 - 3 6 4
6. Albert A. Plauen 56 4 5 6 6 10 2 7 6 - 3 4 3
7. Frank R. Leipzig 54 6 4 - 6 10 2 7 6 6 3 - 4
8. Günter S. Hennef 45 - 5 - 6 - 2 7 6 6 3 6 4
9. Ingmar Rubin Berlin 43 - 5 6 6 - - 7 - 6 3 6 4
10. Siegfried Herrmann Greiz 40 - 5 6 3 8 2 7 - - 3 6 -
11. Niklas Trommer Chemnitz 34 5 4 6 - - 2 7 - - 3 6 1
11. Katja Seidel Chemnitz 34 - - - - - 2 7 6 6 3 6 4
12. Bernd Berlin 32 - 5 - 6 - 1 5 - 6 3 6 -
12. Harald Schreiber Köln 32 - - - - - - 7 6 6 3 6 4
12. Paula Rauschenbach Chemnitz 32 6 - - 6 8 2 - - - - 6 4
13. Maya Melchert Chemnitz 30 6 5 - - - 2 7 - - - 6 4
14. Helmut Schneider Su-Ro 29 - 5 6 6 - 2 7 - - 3 - -
15. Josefin Buttler Chemnitz 28 6 5 - - - 1 6 6 - - - 4
16. Emily Seidel Chemnitz 27 - - - 6 - 2 5 6 6 2 - -
16. Ronja Schobner Chemnitz 27 - - - - 10 - 6 6 5 - - -
17. Anabel Pötschke Chemnitz 25 6 - - - - - 5 - 4 - 6 4
18. Sophie Pöschel Chemnitz 24 - - - - 10 2 - 6 6 - - -
18. Adrian Werner Chemnitz 24 - 5 6 - - - 5 - - 2 6 -
19. Jakob Walther Chemnitz 23 5 5 - - - - 7 - 6 - - -
19. Florine Lorenz Chemnitz 23 6 - - - - 1 6 6 - - - 4
20. Marie Reichelt Chemnitz 21 6 4 - - - - - 6 5 - - -
21. Ronja Kempe Chemnitz 20 4 5 - - - 2 - - - - 6 3
21. Yannick Schädlich Chemnitz 20 5 - - - - 2 - 4 6 - - 3
21. Paula Anita Beneking Chemnitz 20 - 5 - - - 2 7 - 6 - - -
21. Moritz Kinder Chemnitz 20 6 5 - - - - 6 - - - - 3
22. Christian Carda Schorndorf 19 - - - - 10 2 7 - - - - -
22. Dorothea Richter Chemnitz 19 6 - - - - - 7 - 6 - - -
23. Tabea Raupach Chemnitz 16 - 4 - - - 2 - - 4 - 6 -
23. Adrian Amini Chemnitz 16 4 5 - - - - 5 2 - - - -
23. Othmar Z. Weimar (Lahn) 16 6 4 6 - - - - - - - - -
24. Nagy-Balo Andras Budapest 15 - - 6 6 - - - - - 3 - -
25. Reka W. Siegerland 14 6 - - 6 - 2 - - - - - -
25. Quentin Steinbach Chemnitz 14 5 - 6 - - - - 3 - - - -
26. Chiara Röder Chemnitz 13 - - 6 - - 2 - - 5 - - -
26. Josefine Bohley Chemnitz 13 - - - 6 - - 7 - - - - -
26. Helene Kübeck Chemnitz 13 - 4 - - - 2 - - 2 - 5 -
27. Petar H. Neuwied 12 6 - 6 - - - - - - - - -
27. Dominique Böttinger Chemnitz 12 - - - 3 3 - - - 4 2 - -
28. Alexandra Höfner Chemnitz 11 - 5 6 - - - - - - - - -
29. Rufus Windrich Chemnitz 10 - - - 6 - - 4 - - - - -
29. Antonio Jobst Chemnitz 10 5 5 - - - - - - - - - -
30. Andree Dammann Muenchen 9 - - - - - 2 - - - 3 - 4
30. Christian Meißner Chemnitz 9 - - - - - - - - - 3 6 -
31. Linnea Böhm Chemnitz 8 - - - - - 2 6 - - - - -
31. Henri Lorenz Chemnitz 8 - - - - 5 - 3 - - - - -
32. Sebastian Z Pirna 6 - - 6 - - - - - - - - -
32. Marie-Sophie Roß Chemnitz 6 6 - - - - - - - - - - -
32. Felix Helmert Chemnitz 6 6 - - - - - - - - - - -
32. Volker Bertram Wefensleben 6 - - - - - - - - - - 6 -
32. Sarah Badaoui Frankfurt/Main 6 6 - - - - - - - - - - -
32. Luca Sindel Schrobenhausen 6 6 - - - - - - - - - - -
32. Mikko Winkler Chemnitz 6 - - - 6 - - - - - - - -
33. Luise Schlenkrich Chemnitz 5 - - - 2 2 - - - - 1 - -
33. Jannik Ebermann Chemnitz 5 - - - - - - 5 - - - - -
33. Oskar Strohbach Chemnitz 5 - 5 - - - - - - - - - -
34. Tommy Oeser Chemnitz 4 - - - - - - 4 - - - - -
34. Pascal Graupner Chemnitz 4 4 - - - - - - - - - - -
35. Henry Hasenknopf Chemnitz 1 - - - - - 1 - - - - - -
35. Liuba Bässler Chemnitz 1 - - - - - 1 - - - - - -

 

You have no rights to post comments.
Zum Kommentieren muss man angemeldet sein.