Serie 57

Beitragsseiten

 Aufgabe 6

678. Wertungsaufgabe

deu

In der letzten Woche waren noch viele rote Würfel übrig geblieben. Bernd hatte daraufhin dieses Gebilde zusammengeleimt. „Man könnte das „Kunstwerk“ Würfelknoten nennen, denn wenn man genau hinschaut, sieht das so aus.“, meinte Bernd. Lisa grübelte kurz und sagte dann: „Ja das stimmt. Man kann es richtig gut nachvollziehen, wenn ich das „Kunstwerk“ drehe, sieht man das genau.“
Wie viele Würfel hat Bernd benutzt? Wie groß ist die Oberfläche? (Kantenlänge jedes Würfels beträgt 2 cm.) (2+2 blaue Punkte)

678

Auf dem Bild erkennt man unten rechts einen kleinen Punkt. Der soll eine Öffnung für einen ganz dünnen Faden darstellen. Wie lang wäre ein möglichst kurzer Faden, der durch alle Würfel hindurch geht und wieder an dem eingezeichneten Punkt endet? Dabei geht der Faden immer durch Löcher, die in der Mitte eines Würfels liegen. Der Weg innerhalb eines Würfels ist frei wählbar. (6 rote Punkte)

Termin der Abgabe 10.06.2021. Срок сдачи 10.06.2021. Ultimo termine di scadenza per l´invio è il 10.06.1921. Deadline for solution is the 10th. June 2021. Date limite pour la solution 10.06.2021. Soluciones hasta el 10.06.2021. Beadási határidő 2021.06.10. 截止日期: 2021.06.10 - 请用徳语或英语回答。

chin

第678题

上周还剩下很多红色的骰子,贝恩德把它们粘合起来。
“人们可以称它为"艺术品",因为当你仔细看的时候,它真的很像,”贝恩德说。
丽莎沉思了一会儿,然后说:“对,没错! 当我把这个"艺术品"旋转一下时,人们就能够更好的理解。”
请问贝恩德用了多少个骰子? 表面是多大?(每个骰子的边长是2厘米。)。 (2 + 2 个蓝点)

678

在这张图片中,人们可以看到右下角有一个小点。 如果这代表一条非常细的线的开端,那么从这儿穿过所有骰子,最后再回到这个点,最可能短的线是多长?线要一直通过骰子中间的孔,不过可以自由选择每个骰子内部的路径。 (6个红点)
截止日期: 2021.06.10 - 请用徳语或英语回答。

rus

На прошлой неделе осталось ещё много красных кубиков. Бернд склеил из них эту конструкцию. «Вы можете назвать это «произведение искусства» кубическим узлом, потому что, если присмотреться, оно так именно выглядит», сказал Бернд. Лиза ненадолго задумалась, а затем сказала: «Да, верно. Это действительно можно хорошо понимать. Когда я вращаю это «произведение искусства», вы можете это точно увидеть ». Сколько кубиков использовал Бернд? Какова площадь поверхности данной конструкции? (Длина ребра каждого кубика 2 см). (2 + 2 синих очка)

678

На картинке вы можете справа внизу увидеть маленькую синюю точку. Она изображает отверстие для очень тонкой нити. Какой длины будет самая короткая нить, которая проходит через все кубики и заканчивается опять в нарисованной точке? При этом нить всегда проходит через отверстия в середине кубика. Путь внутри кубика выбирается произвольно.
(6 красных очков)

hun

A múlt héten sok piros kocka megmaradt. Bern ezt az építményt rakta ki belőlük. „Nevezhetnénk a „műalkotást” kockacsomónak, mert ha alaposan megnézzük, úgy néz ki.” – mondta Bernd. Ezen elgondolkodott kicsit Lisa és azt mondta: „Igen, nagyon jól el lehet képzelni, ha a „műalkotást” megfordítjuk, és úgy megnézzük.”
Hány kockát vett Bernd? Mekkora a felülete (élhosszúság 2 cm)? 2+2 kék pont

678

A képen látható jobb oldalon, alul egy kis pont. Ezt képzeljük el egy vékony fonál nyílásának. Milyen hosszú lenne a lehető legrövidebb fonál, ami minden kockán áthalad és végül a jelzett pontban végződik? A fonál mindig a kockák közepén megy át. Az út a kockán belől szabadon választható. 6 piros pont

frz

Il restait beaucoup de cubes rouges la semaine dernière. Bernd a ensuite collé cette structure. «On peut appeler « l'œuvre d'art » un nœud de cube, car si tu regarde de près, cela ressemble à ceci», a déclaré Bernd. Lisa a réfléchi brièvement puis a dit: «Oui, c'est vrai. Tu peut vraiment comprendre que lorsque je tourne '"l'œuvre d'art", tu peux vraiment le voir. "
Combien de dés Bernd a-t-il utilisés? Quelle est la taille de la surface (la longueur du bord de chaque cube est de 2 cm.). (2 + 2 points bleus)

678


Sur la photo, on peut voir un petit point en bas à droite. Cela devrait représenter une ouverture pour un fil très fin. Quelle sera la longueur du fil le plus court possible qui traverse tous les cubes et se termine à nouveau au point dessiné. Le fil passe toujours par des trous au milieu d'un cube. Le chemin dans un cube est librement sélectionnable. (6 points rouges)

esp

La semana pasada aún quedaban muchos cubos rojos. En consecuencia, Bernd había pegado esta estructura. "Se podría decir que esta "obra de arte" es un nudo cúbico, porque si se mira de cerca, se parece a esto", dijo Bernd. Lisa reflexionó por un momento y entonces: "Sí, así es. Realmente se puede entender bien. Si giro la "obra de arte", lo puedo ver exactamente".
¿Cuántos cubos utilizó Bernd? ¿Qué tamaño tiene la superficie (longitud de las aristas de cada cubo es de 2 cm)? (2+2 puntos azules)

678

En la imagen se puede ver un punto pequeño. Se supone que esto es una apertura para un hilo muy fino. ¿Qué longitud tendría el hilo más corto posible que atraviesa todos los cubos y termina de nuevo en el punto dibujado? El hilo siempre pasa por los agujeros que se encuentran en el centro del cubo. La trayectoria dentro de un cubo puede elegirse libremente. (6 puntos rojos)

en

Last week a lot of red cubes were left. So Bernd glued together the following construction. “You could name this “art piece!” a cube knot, because if you take a close look, at it you it just looks alike.”, Bernd said. Lisa thought about it and answered: “Yeah, that's true. That's understandable, especially if you turn the “art piece” around, you can see it clearly.”
How many cubes did Bernd use? How big is their face (edge length of every cube is 2 cm.). (2+2 blue points)

678

On the picture you will recognize a small point at the right bottom. It represents a small opening for a very thin twine. How long would such a very short twine be, that would go through all the cubes and ends at the drawn point again. The twine is always pulled through holes which lay in the center of the cubes. You are free to choose its way inside the cubes. (6 red points)

it

Dalla settimana scorsa sono sopravanzati tanti dadi rossi. Bernd ne ha incollato la tale creazione. “Questa ‘opera d’arte’ potrebbe essere chiamata nodo di dadi, perchè sembra proprio essere quello.”, Bernd diceva. Lisa ne pensava un attimo e poi replicava: “Sì,è vero. Especialmente quando si gira la tua ‘opera d’arte’, si vede benissimo.”
Quanti dadi ha usato Bernd? Qual’è la superficie (lunghezza degli spigoli di ogni dado: 2 cm). (2+2 punti blu)

678

Sul disegno si vede in basso a destra un piccolo punto. Quale sarebbe la lunghezza del filo più corto che passerebbe sotto a tutti I dadi per poi finire nel punto dipinto? Il filo passa sempre per buchi al centro dei dadi, ma il percorso all’interno può essere scelto liberamente. (6 punti rossi)

Lösung/solution/soluzione/résultat/Решение:

Die rote Aufgabe war leider etwas missverständlich formuliert. Es sollte Würfelseitenmitte heißen und nicht Würfelmitte.

Die Lösung bezieht sich auf Ersteres:
Schöne Ergänzung zur Aufgabe: http://www.walser-h-m.ch/hans/Miniaturen/W/Wuerfelknoten/Wuerfelknoten.pdf

Musterlösung von Reinhold, danke
ich gehe davon aus, dass das "Gebilde" von allen Seiten gleich aussieht und folglich jede Außenseite vier Würfel enthält, von denen zwei auch zu einer benachbarten Seite gehören, und insbesondere dem 2x2x2er Innenbereich in jeder 2x2-Schicht nur ein Würfel fehlt, insgesamt also zwei.
Damit hat Bernd
   6 * 4 - 3 * 2 + (2^3 - 2) = 24
Würfel benutzt.
Weiter besteht die Oberfläche des "Gebildes" genau aus allen von jeweils einer der sechs Seiten sichtbaren kleinen Würfelseiten, also aus
   6 * 13 = 78
kleinen Würfelseiten und ist damit
   78 * 2^2 = 312 cm^2
groß.

Bei der Fadenaufgabe gehe ich davon aus, dass der Faden jeden kleinen Würfel (mindestens einmal) durch die Mitte einer WürfelSEITE "betreten" und durch die Mitte einer anderen Würfelseite wieder verlassen soll - und dabei nicht durch die WürfelMITTE gehen muss, aber eben ein unendlich kurzer Durchgang (gleicher Ein- und Ausgang) nicht ausreicht.
Daraus folgt dann zunächst - außer beim Startwürfel unten rechts -, dass der (kürzeste) Weg durch Würfel, die nur zwei Nachbarn haben, bereits festgelegt ist. Das gilt auch für auf diese Weise zweimal erreichte Würfel, da ein doppelter Fadendurchgang durch einen Würfel, wie wir später sehen werden, nicht notwendig ist (wieder mit Ausnahme des Startwürfels) und bei dem Verhältnis der möglichen Durchgangslängen auf jeden Fall zu einer Vergrößerung der Fadenlänge führen würde.
Zur Sicherheit formalisiere ich aber nun das "Gebilde". Ich bezeichne die Würfel durch ihre "Koordinaten" (x, y, z), x von links nach rechts, y von vorn nach hinten, z von unten nach oben gezählt, x, y, z = 1, 2, 3, 4.

Damit sind die 18 Würfel der 6 Außenseiten und ihre Nachbarwürfel
   (1, 3, 3) links,            Nachbarn (2, 3, 3), (1, 2, 3),
   (1, 2, 3) links,            Nachbarn (1, 3, 3), (1, 1, 3), (2, 2, 3),
   (1, 1, 3) vorn und links,   Nachbarn (1, 2, 3), (1, 1, 2),
   (1, 1, 2) vorn und links,   Nachbarn (1, 1, 3), (2, 1, 2),
   (2, 1, 2) vorn,             Nachbarn (1, 1, 2), (3, 1, 2), (2, 2, 2),
   (3, 1, 2) vorn,             Nachbarn (2, 1, 2), (3, 2, 2),

   (2, 2, 1) unten,            Nachbarn (3, 2, 1), (2, 2, 2),
   (3, 2, 1) unten,            Nachbarn (2, 2, 1), (4, 2, 1), (3, 2, 2),
   (4, 2, 1) unten und rechts, Nachbarn (3, 2, 1), (4, 3, 1),
   (4, 3, 1) unten und rechts, Nachbarn (4, 2, 1), (4, 3, 2),
   (4, 3, 2) rechts,           Nachbarn (4, 3, 1), (4, 3, 3), (3, 3, 2),
   (4, 3, 3) rechts,           Nachbarn (4, 3, 2), (3, 3, 3),

   (3, 4, 2) hinten,           Nachbarn (3, 4, 3), (3, 3, 2),
   (3, 4, 3) hinten,           Nachbarn (3, 4, 4), (3, 4, 2), (3, 3, 3),
   (3, 4, 4) oben und hinten,  Nachbarn (2, 4, 4), (3, 4, 3),
   (2, 4, 4) oben und hinten,  Nachbarn (2, 3, 4), (3, 4, 4),
   (2, 3, 4) oben,             Nachbarn (2, 2, 4), (2, 4, 4), (2, 3, 3),
   (2, 2, 4) oben,             Nachbarn (2, 2, 3), (2, 3, 4)

sowie die 6 Innenwürfel

   (2, 2, 3), Nachbarn (1, 2, 3), (2, 2, 4), (2, 3, 3), (2, 2, 2),

   (2, 2, 2), Nachbarn (2, 1, 2), (2, 2, 1), (3, 2, 2), (2, 2, 3),

   (3, 2, 2), Nachbarn (3, 1, 2), (3, 2, 1), (3, 3, 2), (2, 2, 2),

   (3, 3, 2), Nachbarn (4, 3, 2), (3, 4, 2), (3, 3, 3), (3, 2, 2),

   (3, 3, 3), Nachbarn (4, 3, 3), (3, 4, 3), (2, 3, 3), (3, 3, 2),

   (2, 3, 3), Nachbarn (1, 3, 3), (2, 3, 4), (2, 2, 3), (3, 3, 3).

Entsprechend obiger Bemerkungen ergeben sich zunächst folgende "zwingende Wege" (der Startwürfel ist später noch zu modifizieren) - die jeweiligen daraus bereits ermittelbaren Fadendurchgangslängen a (gerader Durchgang) bzw. b = a/2 Wurzel(2) (über Eck, mit Satz des Pythagoras) stehen darunter:
   (2, 3, 3) - (1, 3, 3) - (1, 2, 3) - (1, 1, 3) - (1, 1, 2) - (2, 1, 2) - (3, 1, 2) - (3, 2, 2),
                   b           a           b           b           a           b
   (2, 2, 2) - (2, 2, 1) - (3, 2, 1) - (4, 2, 1) - (4, 3, 1) - (4, 3, 2) - (4, 3, 3) - (3, 3, 3),
                   b           a           b           b           a           b

   (3, 3, 2) - (3, 4, 2) - (3, 4, 3) - (3, 4, 4) - (2, 4, 4) - (2, 3, 4) - (2, 2, 4) - (2, 2, 3).
                   b           a           b           b           a           b

Die kürzeste Verbindung im Zentrum ist nun nicht, dem Verlauf des dicken Knotens folgend, der senkrechte Durchgang, sondern das Abknicken. Durch Einarbeitung des Ein- und Ausgangs A folgt für den kürzesten Fadenverlauf:
   A - (4, 2, 1) - (4, 3, 1) - (4, 3, 2) - (4, 3, 3) - (3, 3, 3) - (3, 3, 2) - (3, 4, 2) - (3, 4, 3) - (3, 4, 4) - (2, 4, 4) - (2, 3, 4) - (2, 2, 4) - (2, 2, 3)
           a           b           a           b           b           b           b           a           b           b           a           b           b
     - (2, 3, 3) - (1, 3, 3) - (1, 2, 3) - (1, 1, 3) - (1, 1, 2) - (2, 1, 2) - (3, 1, 2) - (3, 2, 2) - (2, 2, 2) - (2, 2, 1) - (3, 2, 1) - (4, 2, 1) - A.
           b           b           a           b           b           a           b           b           b           b           a           b

Die Länge des Fadens beträgt damit

   7 a + 18 b = a (7 + 18/2 Wurzel(2)) = 2 (7 + 9 Wurzel(2))

bzw. ca. 39,456 cm.

You have no rights to post comments.
Zum Kommentieren muss man angemeldet sein.