Serie 35
Beitragsseiten
Aufgabe 5
413. Wertungsaufgabe
„Das ist aber ein schönes buntes Parallelogramm“, sagte Mike zu Lisa. „Na ja, einfach nur bunt, würde ich nicht sagen. Ich habe in dem Koordinatensystem für mein Parallelogramm nur Punkte genommen, die ganze Zahlen als Koordinaten aufweisen. Auch alle anderen Punkte (auf den Seiten bzw. im Immeren des Parallelogramms haben ganze Zahlen als Koordinaten. Dann habe ich das Parallelogramm in möglichst viele Teildreiecke zerlegt, die sich nicht überschneiden und eben auch nur „ganzzahligen“ Eckpunkte haben. Ich habe in meinem Fall genau 8 Dreiecke gefunden. Auch bei anderen Varianten der Zerlegung kam ich auf 8 Dreiecke.“ Wie viele Dreiecke kann man maximal finden, wenn die Punkte B und C um jeweils eine Einheit nach rechts verschoben werden – 4 blaue Punkte (Achtung im Inneren gibt es dann einen Punkt mehr, Zeichnung mitliefern.) Wie viele Dreiecke lassen sich für beliebig große Parallelogramme finden? Die Anzahl der Punkte auf den Seiten und im Inneren sei bekannt. 4 rote Punkte
Termin der Abgabe 12.12.2013. Deadline for solution is the 12th. december 2013.
413
"That's a nice, colourful parallelogramm", Mike said to Lisa.
"Well, it's not simply colourful. In my coordinate system I only used points that have integers as coordinates. Also all the other points (on the sides and inside the coordinates) have ontegers as coordinates. Then I divided the coordinates into as many triangles as possible that don't overlap and that have – consequentially – only vertices with integers as coordinates. In my cas I was able to find exactly 8 triangles."
How many triangles can be found if both points B and C are moved one unit to the right? - 4 blue points (Careful: there will be on extra point iside the parallelogramm – enclose sketch)
How many triangles can be found in a general parallelogramm if the number of points along the sides and inside. - 4 red points
Lösung/solution:
Das Ergebnis für die blaue Aufgabe - es sind 12 Dreiecke.
rot: Um die Frage zu beantworten, ist es am einfachsten, die Winkel an den "Punktsorten" zu betrachten. Die vier Punkte an den Ecken des Parallelogramms liegen an Winkeln die 360° (Innenwinkelsumme Viereck), das entspricht der Winkelsumme von zwei Dreiecken. An Punkten auf den Seiten (ohne Ecken) bilden alle ankommenden einen Winkel von 180°, das entspricht je einem Dreieck. Die Punkte im Inneren werden von Dreiecken umgeben, die zusammen an jedem Punkt 360° ergeben, also zwei Dreiecke ergeben. Sei a die Anzahl auf den Seiten des Parallelogramms (ohne Ecken), i die Anzahl der Punkte im Inneneren des Parallelogramms, so ergibt sich die Gesamtzahl aller Dreiecke zu a+2i+2.
Für das Ausgangsbild: a=2, i=2 --> Anzahl 2+2*2+2 = 8
Für die blaue Aufgabe: a=4 i=3 --> Anzahl 4+2*3+2=12