Serie 35

Beitragsseiten

Aufgabe 9

417. Wertungsaufgabe

417

„Das ist aber ein schönes Kreismuster“, sagte Maria zu Lisa. „Ja, ich bin zwar noch nicht fertig, aber du siehst ja wie gedacht ist. Je zwei Kreise sollen sich immer in genau einem Punkt berühren.“
Der größte Kreis soll einen Radius von 6 cm haben. Die zwei gleich großen Kreise werden rot ausgemalt. Wie viel Prozent der großen Kreisfläche ist dann rot? 3 blaue Punkte. Der große Kreis soll seinen Mittelpunkt im Koordinatenursprung eines kartesischen Koordinatensystems (Einheitsstrecke = 1cm) haben. Berechne die Koordinaten der Mittelpunkte der vier Kreise (s. Bild), die im großen Kreis enthalten sind. 8 rote Punkte
Gibt es einen Kreis, der die beiden oberen Kreise und den größten Kreis berührt? (Berechne Lage des Mittelpunktes und den Radius bzw. führe den Nachweis, dass es einen solchen Kreis nicht gibt) + 4 rote Punkte

Termin der Abgabe 23.01.2014. Deadline for solution is the 23th. January 2014. Ultimo termine di scadenza per l´invio è il 23. Gennaio 2014.

417

Che bello questo cerchio”, disse Maria a Lisa. “Si, anche se non ho ancora finito puoi vedere quello che cerco di fare. Due cerchi devono incontrarsi sempre nello stesso punto.” Il cerchio piu´ grande deve avere un raggio di 6 cm. I due cerchi che sono grandi uguali vengono dipinti di rosso. Quant´`e grande la percentuale della grande superficie del cerchio dipinta di rosso? 3 punti blu.

Il cerchio grande deve avere un punto mediano nell´origine delle coordinate di un sistema cartesiano (unita` = 1 cm). Come si possono calcolare i coordinati degli altri punti mediani dei cerchi? 8 punti rossi.

Esiste un cerchio che tocca entrambi cerchi superiori ed il cerchio piu` grande? (Posizione del punto mediano ed il raggio rispettivamente la prova che un tale cerchio non esiste) + 4 punti rossi.

Ultimo termine di scadenza per l´invio è il 23. Gennaio 2014.

417

"That's a nice arrangement of circles", Marie said to Lisa.
"Yes, it is, even though I'm not finished yet. But you see what I'm getting at. Any two circles should meet in exactly one point."
Let the biggest circle have a radius of 6 cm. Let's also colour in the two circles of equal size red. What percentage of the big circle is red? - 3 blue points
Let the centre of the big circle be the centre of a Cartesian coordinate system (1cm units). How can you calculate the coordinates of the centres of the four other circles ? - 8 red points
Is there a circle that is tangent to the upper two circles and the big one? (Calculate the coordinates of its centre and give its radius. Alternatively, show that there does not exist such a circle) + 4 red points

Lösung/solution:

Hier ein Bild zur Lösung:

417-lsg k vergrößertes Bild
blau: Die beiden Kreise haben jeweils einen Radius von 3 cm, der ganz große Kreis hat einen Radius von 6 cm. Gemäß der Flächeninhaltsformel für den Kreis, ergibt sich, dass die beiden kleineren Kreise zusammen genau 50 % der Fläche des großen Kreises ausmachen.

Für rot lassen sich für alle Kreise der Ausgangsfigur (zum Teil  mit Hilfe  des Satz des Pythagoras) die Mittelpunkte auf elementare Art finden (und aus dem Bild auch ablesen).

Der zusätzliche Kreis muss existieren. siehe http://de.wikipedia.org/wiki/Satz_von_Descartes dort ist auch die Lösung letzlich beschrieben. Der Radius des "neuen" Kreises ist ein 1/7 cm, damit überlasse ich das Bestimmen der Koordinaten des Mittelpunktes dem geneigten Leser.