Serie 52

Beitragsseiten

Aufgabe 11

623. Wertungsaufgabe

623

„Schau mal meine Kette aus Kreisen an“, sagte Maria zu ihrem Bruder. „Die sieht gut, auch die Tangenten von A aus ergeben ein schönes Muster.“
Die Kreise sind alle gleichgroß (r=1 cm). Die Berührungspunkte des Kreises mit dem Mittelpunkt B ergeben zusammen mit dem Punkt A ein gleichseitiges Dreieck.
Wie groß ist der Flächeninhalt des gleichseitigen Dreiecks? (vollständige Berechnung 6 blaue Punkte, wenn an einer passenden Konstruktion gemessen wird, sind es nur 4 blaue Punkte.
Der Winkel zwischen Tangenten an den Kreis um C ist kleiner als 60°, beim Kreis um D ist der Winkel noch kleiner. Setzt man die Konstruktion mit passenden Punkten E, F, G, H, I, … fort, so wird irgendwann zum ersten Mal ein Winkel erreicht, der kleiner ist als 10 °. Bei welchem Punkt ist das der Fall? Berechnung 10 rote Punkte oder konstruktive Lösung 8 rote Punkte.

Die Lösung des Symbolrätsels bringt zwei zusätzliche blaue Punkte, aber nur wenn reguläre Punkte eingebracht werden. Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, → gleiche Ziffer, verschiedene Symbole → verschiedene Ziffern.  © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

623 schuhe

Termin der Abgabe 05.12.2019. Ultimo termine di scadenza per l´invio è il 05.12.2019. Deadline for solution is the 5th. December 2019. Date limite pour la solution 05.12.2019. Soluciones hasta el 05.12.2019. Beadási határidő 2019.12.05.

hun

623

„Nézd már a láncomat a körökből.” – mondta Maria a bátyjának. „Jól látod, hogy az A pontból húzott érintők egy szép mintát adnak.”
A körök mind egyenlő nagyságúak (r = 1 cm). A B középpontú kört érintő pontok az A ponttal egy egyenlő szárú háromszöget alkotnak. Mekkora a felülete az egyenlő szárú háromszögnek? (Teljes számítás 6 kék pont, ha a megfelelő szerkesztést méri le, csak 4 kék pont.
A C kör érintőinek szöge kisebb, mint 60°, a D kör érintőinek szöge még kisebb. Ha folytatjuk a szerkesztést E, F, G, H, I köré, egyszer csak elérjük a szöget, ami kisebb 10°-nál. Melyik pontnál van ez így? Számítás 10 piros pont, szerkesztés 8 piros pont.
A szimbólum rejtvény megoldásáért további két kék pontot kaphat, amennyiben a többi feladatért is szerzett pontot. A rejtvény megfejtésére érvényes: minden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket.  ©HRGauern[at]@t-online.de

623 schuhe

fr

623

"Regarde ma chaîne de cercles", dit Maria à son frère. "Ça a l'air bien, même les tangentes de A font un joli motif."
Les cercles ont tous la même taille (r = 1 cm). Les points de contact du cercle avec le centre B, avec le point A, forment un triangle équilatéral.
Quelle est l'aire du triangle équilatéral? (Calcul complet pour 6 points bleus. Si vous le mesurez sur une construction correspondante, il n’y a que 4 points bleus).
L'angle entre les tangentes et le cercle autour de C est inférieur à 60 °. Dans le cercle autour de D, l'angle est encore plus petit. Si l'on continue la construction avec les points appropriés E, F, G, H, I, ..., puis à un moment donné pour la première fois, un angle inférieur à 10 ° est atteint.
A quel moment est-ce le cas? Calcul pour 10 points rouges ou solution constructive 8 pour points rouges.
La solution de l'énigme apporte deux points bleus supplémentaires, mais seulement si des points réguliers ont été obtenus. Règle pour l’énigme:Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. ©HRGauern[at]@t-online.de

623 schuhe

esp

623

„Mira mi cadena de círculos“, le dijo María a su hermano. „Se ve bien. Y también las tangentes del punto A forman un dibujo bello.“
Los círculos todos son del mismo tamaño (r=1 cm). Los puntos de contacto del círculo con el punto central B juntos con el punto A forman un triángulo equilátero. ¿Cuál tamaño tiene el área del triángulo equilátero? Cálculo completo: 6 puntos azules. Si se mide en una construcción adecuada sólo se recibe 4 puntos azules.
El ángulo entre las tangentes al círculo alrededor de C tiene menos que 60°. Aún más pequeño es el ángulo entre las tangentes al círculo alrededor de D. Prosiguiendo la construcción con puntos apropiados E, F, G, H, I .. alguna vez resulta por primera vez un ángulo que queda más pequeño que 10°. ¿Cuál punto sería? Cálculo: 10 puntos rojos. Solución constructiva: 8 puntos rojos.
Por la solución de rompecabeza de símbolos se recibe dos puntos azules adicionales si se ha ganado los puntos regulares antes. Para el rompecabeza aplica lo siguiente: Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras.  ©HRGauern[at]@t-online.de

623 schuhe

en

623
“Have a look at my circle chain”, Maria told her brother. “That looks good, the tangents of A produce nice patterns.”
The circles all have the same size (r= 1cm). The boundary points of the circle and the centre B together with point A produce an equilateral triangle. (full calculation – 6 blue points; if it was measured with a suitable construction – only 4 blue points).
The angle between tanget lines at the circle around C is smaller than 60°; at the circle around D the angle is even smaller. If you continue the construction with fitting points E, F, G, H, I, …, you will at least reach an angle that is for the first time smaller than 10°.
At which point does this happen? – calculation 10 red points or constructional solution 8 red points.

Solving the picture-puzzle will get you two extra blue points, provided you also got points doing the regular maths problem. The rule for each picture puzzle is: Each icon represents one digit, same icons, same digits, different icons, different digits.  ©HRGauern[at]@t-online.de

623 schuhe

it

623

“Ecco la mia catena di cerchi”, Maria diceva a suo fratello. “È bella, anche le tangenti, iniziando in A, fanno un bel disegno.”

I cerchi hanno tutti la stessa misura (r = 1 cm). I punti di tangenza del cerchio col centro B formano onsieme al punto A un triangolo equilatero. Quale misura ha la superficie di questo triangolo euilatero? (Per la calcolazione completa vengono dati 6 punti blu, se si misura a una costruzione adeguata, sono solo 4 punti blu)

L’ angolo entro le due tangenti al cerchio col centro C è inferior di 60°, per il cerchio col centro D ancora più piccolo. Continuando la costruzione con punti E, F, G, H, I,… adeguati, prima o poi si arriva ad un angolo che per la prima volta è inferiore a 10°. Per quale punto succede?

(Calcolazione: 10 punti rossi, costruzione 8 punti rossi.)

La soluzione dell´indovinello simbolico apporta altri due punti blu, ma solo se si apportano punti regolari. Per l´indovinello vale: Ogni simbolo sta per una cifra, stessi simboli, stessa cifra, diversi simboli diverse cifre. ©HRGauern[at]@t-online.de

623 schuhe

Lösung/solution/soluzione/résultat:
Die Aufgabe brachte recht viele Punkte, so als Geschenk zur Weihnachtszeit. ;-)
Musterlösung von Reinhold M, danke.

Da die Tangenten senkrecht auf den zugehörigen Radien stehen, folgt mit AB = 2r, A2B = r zum einen mit
 sin(Winkel(A2AB)) = r / (2r) = 1/2
 Winkel(A2AB) = 30° (falls man die Winkelfunktionshauptwerte kennt...), d.h. Winkel(A2AA3) = 60° - also der Beweis, dass das Dreieck AA2A3 tatsächlich gleichseitig ist, und zum anderen für die Dreiecksseite a = AA2 (Satz des Pythagoras)
 a = Wurzel(AB^2 - A2B^2)
   = Wurzel(3) r
und damit für die Dreieckshöhe h (wieder Pythagoras)
 h = Wurzel(a^2 - (a/2)^2)
   = 1/2 Wurzel(3) a
   = 3/2 r
(oh - dann wäre es wohl auch anders gegangen...). Der gesuchte Flächeninhalt Ablau des Dreiecks AA2A3 ist damit
 Ablau = 1/2 a h
       = 3/4 Wurzel(3) r^2,
mit r = 1 cm also 3/4 Wurzel(3) oder ca. 1,299 cm.

Bezeichnen wir nun die Winkel zwischen den Tangenten mit αi, i = 1, 2, ... (α1 für die Tangenten an den Kreis um B, α2 für die Tangenten an den Kreis um C usw.), so gilt ja analog oben allgemein
 sin(αi/2) = r / (2ir)
           = 1 / (2i)
bzw.
 i = 1 / (2 sin(αi/2)).
Wegen sin(5°) ≈ 0,0871 (die Sinusfunktion ist in dem Bereich monoton wachsend) ist also die kleinste Zahl i gesucht, für die
 i > 1 / (2 * 0,0871)
   ≈ 5,74
ist. Das ist die 6 - d.h., der Winkel zwischen den Tangenten an den Kreis um G ist erstmals kleiner als 10°.

Das Holzschuhrätsel habe ich zu
 AAA /  BC =  DA
  -     *     +
 ECF +  CG = EBG
  =     =     =
 BHA + BIG = EHC
umgeschrieben. Damit zeigt die 2. Zeile
 F = 0 und C <= 4,
womit die einzige Lösung der 1. Zeile (mit 111 = 3 * 37, A letzte Ziffer eines Faktors...)
 777 = 21 * 37
ist, also
 A = 7, B = 2, C = 1, D = 3.
Damit folgt der 3. Zeile
 G = 4, I = 9, E = 5
und schließlich der 1. oder 3. Spalte
 H = 6.
Die Lösung ist somit zusammengefasst
 777 /  21 =  37
  -     *     +
 510 +  14 = 524
  =     =     =
 267 + 294 = 561.