Serie 52

Beitragsseiten

Aufgabe 8

620. Wertungsaufgabe

„Schau mal Mike, ich habe herausgefunden, dass die Zahl 5525 lässt sich auf zwei Arten als Summe von zwei Quadratzahlen schreiben: 5525= 7² + 74²= 50² + 55²“., sagte Lisa. Grübelnd zieht sich Mike zurück und kommt nach 30 Minuten wieder. „Schau mal, es gibt noch mehr Möglichkeiten die 5525 als Summe zweier Quadratzahlen zu schreiben.“ Für jede Möglichkeit gibt es einen blauen Punkt. - Vertauschen der Zahlen zählt nicht extra.
Eulers Irrtum: Ein Freund des berühmtem Mathematikers Leonard Euler erzählte ihm, dass er glaube, dass sich alle ungeraden natürliche Zahlen n in der Form n = p + 2g² schreiben lassen. (p Primzahl, p darf auch 1 sein, g – ganze Zahl). Euler rechnete für alle Zahl bis n = 2501 und fand (mindestens) eine solche Zerlegung. Euler meinte daraufhin, die Formel passe für alle (ungeraden) natürlichen Zahlen, aber das war falsch. Bis jetzt sind 2 ungerade natürliche Zahlen (n < 10000) gefunden worden, für die es eine solche Zerlegung nicht gibt. Für das fleißige Suchen gibt es 2 x 4 rote Punkte. (Anmerkung: Ob es noch mehr als die zwei gibt, ist nicht bekannt.)
Die Lösung des Symbolrätsels bringt zwei zusätzliche blaue Punkte, aber nur wenn reguläre Punkte eingebracht werden. Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, → gleiche Ziffer, verschiedene Symbole → verschiedene Ziffern.  © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

620 gitarren

Termin der Abgabe 14.11.2019. Ultimo termine di scadenza per l´invio è il 14.11.2019. Deadline for solution is the 14th. November 2019. Date limite pour la solution 14.11.2019. Soluciones hasta el 14.11.2019. Beadási határidő 2019.11.14.

hun

„Nézd már Mike, kitaláltam, hogy az 5525-ös számot felírhatom két négyzetes szám összegeként: 5525= 7² + 74²= 50² + 55². „– mondta Lisa.
Mike komoran elvonult és 30 perc múlva tért vissza. „ Nézd csak, van több lehetőség is az 5525-öt mint két négyzetes szám összegét megadni.” Minden lehetőség egy kék pont. A számok felcseréléséért nem jár pont.
Euler tévedése: A híres matematikus, Leonard Euler egyik barátja állította neki, hogy szerinte minden páratlan szám megadható ezzel a képlettel: n = p + 2g². (p prímszám, p nagyobb, mint 1, g egész szám). Euler utána számolt n = 2501-ig és talált legalább egy tévedést. Erre azt mondta, hogy a képlet igaz minden természetes számra, de ez nem így van. Eddig 2 páratlan természetes számot (n10000) találtak, ahol ilyen szétszedés nincs. A szorgos keresésért 2x4 piros pont jár. (Megjegyzés: hogy van-e több, mint kettő, nem ismert.)
A szimbólum rejtvény megoldásáért további két kék pontot kaphat, amennyiben a többi feladatért is szerzett pontot. A rejtvény megfejtésére érvényes: minden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket. ©HRGauern[at]@t-online.de

620 gitarren

fr

"Ecoute, Mike, j'ai découvert que le nombre 5525 peut être écrit de deux manières: la somme de deux carrés: 5525 = 7² + 74² = 50² + 55²", a déclaré Lisa. Dans ses pensés, Mike se retire et revient au bout de 30 minutes. "Regardes, il y a encore plus de façons d'écrire le 5525 comme la somme de deux carrés." Il y a un point bleu pour chaque possibilité. - L'échange des chiffres ne compte pas!
Erreur d'Euler: un ami du célèbre mathématicien Leonard Euler lui dit qu'il croyait que tous les nombres naturels impairs n pouvaient être écrits sous la forme n = p + 2g². (p prime, p peut également être 1, g - nombre entier). Euler calculé pour tous les nombres jusqu'à n = 2501 et a trouvé (au moins) une telle décomposition. Euler a ensuite dit que la formule était valable pour tous les nombres naturels, mais c'était faux. Jusqu'à présent, deux nombres naturels impairs (n <10000) ont été trouvés pour lesquels une telle décomposition n'existe pas. Pour une recherche diligente, il y a 2 x 4 points rouges. (Remarque: on ne sait pas s'il y en a plus que ces deux.)
La solution de l'énigme apporte deux points bleus supplémentaires, mais seulement si des points réguliers ont été obtenus. Règle pour l’énigme:Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. ©HRGauern[at]@t-online.de

620 gitarren

esp

„Mira Mike: he descubierto que el número 5525 se puede describir de dos maneras como suma de números cuadrados: 5525= 7² + 74²= 50² + 55²“, dijo Lisa. Cavilando Mike se retiró y volvió 30 minutos más tarde. „Mira, aún hay más posibilidades de describir 5525 en números cuadrados.“ Para cada posibilidad se recibe un punto azul. Por supuesto no rinde otro punto cambiar los números.
El yerro de Euler: Un amigo del famoso matemático Leonard Euler le contó que creía que todos los números impares naturales n se podían describir en la forma n = p + 2g². (p = número primo, p también puede ser 1, g = número entero). Euler lo revisaba hasta el número n = 2501 y como funcionaba así creía que era puesta en evidencia la hipótesis de su amigo. Pero en verdad esta formula (n = p + 2g²) no se puede aplicar a todos los números impares naturales. Hasta hoy se han encontrado 2 números impares naturales (n < 10000) que no se dividen en dicha formula. Para la búsqueda trabajadora se recibe 2 x 4 puntos rojos. (Comentario: No se sabe exactamente, si hay más que dos.)

Por la solución de rompecabeza de símbolos se recibe dos puntos azules adicionales si se ha ganado los puntos regulares antes. Para el rompecabeza aplica lo siguiente: Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras.  ©HRGauern[at]@t-online.de

620 gitarren

en

“Look Mike, I found out that there are two possibilities to write the number 5525 as a sum of two square numbers: 5525= 7² + 74²= 50² + 55²”, said Lisa. Mike thinks about it for 30 minutes and then he comes back. “Look, there are more possibilities two write 5525 as a sum of two square numbers.” - For every possibility you get one blue point. Interchanging the numbers doesn’t count.
Euler’s misapprehension: A friend of the famous mathematician Leonard Euler told him, that the thinks, that all odd whole numbers n can be written in the following form: n = p + 2g². (p - prime number, p can also be 1, g – integer). Euler calculated all numbers until n =2501 and found (at least) one such partition. Euler then guessed that the formula fits for all whole numbers, but this turned out to be wrong. Until now only 2 odd whole numbers (n < 10.000) have been found, for which such a partition is not possible. – For the diligently search you will get 2 x 4 red points. (explanatory note: If there are more than these two has not been proven.
Solving the picture-puzzle will get you two extra blue points, provided you also got points doing the regular maths problem. The rule for each picture puzzle is: Each icon represents one digit, same icons, same digits, different icons, different digits.  ©HRGauern[at]@t-online.de

620 gitarren

it

“Guarda, Mike, ho scoperto che il mumero 5525 si può scrivere in due modi come somma di due numeri al quadrato: ”, diceva Lisa. Mike si ritira, scervellandosi, per tornare dopo una mezz’ ora. “Ecco; ci sono altre possibilità per scrivere la 5525 come somma di due numeri quadrati.” Per ogni possibilità viene dato un punto blu. – Lo scambiamento di due numeri non vale però come possibilità diversa.
Lo sbaglio di Euler: Un amico del celebre matematico Leonard Euler gli raccontava che pensasse che tutti i numeri naturali impari n si potrebbero scrivere nel modo . (p sia un numero primo o 1, g un numero intero). Euler calcolava per tutti i numeri fino a n = 2501 e trovava (almeno) un tale scomponimento. Per questo Euler affermava che la formula funzionasse per tutti I numeri (impari) naturali, ma sbagliava. Finora sono stati trovati 2 numeri impari naturali (n < 10000) che non hanno un tale scomponimento. Per la ricerca diligente, si riceva 2 x 4 punti rossi. (Nota: Non si sa se ci sono piú di questi due numeri.)
La soluzione dell´indovinello simbolico apporta altri due punti blu, ma solo se si apportano punti regolari. Per l´indovinello vale: Ogni simbolo sta per una cifra, stessi simboli, stessa cifra, diversi simboli diverse cifre.  ©HRGauern[at]@t-online.de

620 gitarren

Lösung/solution/soluzione/résultat:

Musterlösung von Reinhold M., danke

Es gilt Wurzel(5525/2) ≈ 52,6 und Wurzel(5525) ≈ 74,3. Man hat also für den "blauen Teil" der Aufgabe nur 5525 - n^2 für die natürlichen Zahlen n = 53, 54 sowie 56 bis 73 zu untersuchen - 55 und 74 sind ja schon gegeben, und das sind weniger als n = 1, 2, ..., 52. Das geht z.B. in Excel (wo dann wieder die Anzahl egal ist...) mittels der in die entsprechenden Zeilen eingetragenen Formel =WURZEL(5525-ZEILE()^2)-ABRUNDEN(WURZEL(5525-ZEILE()^2);0)=0 und entsprechender Filterung nach WAHR. Man erhält als die einzigen vier weiteren Lösungen
 5525 = 14^2 + 73^2
      = 22^2 + 71^2
      = 25^2 + 70^2
      = 41^2 + 62^2.

Für den "roten Teil" habe ich dann doch auf C# zurückgegriffen, mit dem ich meist arbeite, und ohne große Optimierungsüberlegungen folgendes kleines Programm zusammengeschrieben:
static void Main(string[] args)
{
    List<int> Primzahlen = new List<int>();
    Primzahlen.Add(1);
    for (int i = 2; i <= 9999; i++)
    {
        if (IstPrim(i)) Primzahlen.Add(i);
    }
    bool IstBoese;
    for (int i = 1; i < 10000; i = i + 2)
    {
        IstBoese = true;
        foreach (int j in Primzahlen)
        {
            if (j > i) break;
            if (IstQuadratdoppel(i - j))
            {
                IstBoese = false;
                break;
            }
        }
        if (IstBoese) Debug.Print(i.ToString());
    }
}
static bool IstPrim(int i)
{
    bool istPrim = true;
    for (int j = 2; j<=Math.Sqrt(i); j++)
    {
        if (i % j == 0) istPrim = false;
    }
    return istPrim;
}
static bool IstQuadratdoppel(int i)
{
    if (i % 2 == 1) return false;
    int j = (int)Math.Round(Math.Sqrt(i/2));
    return (2 * j * j == i);
}
Es hat die beiden Zahlen 5777 und 5993 ausgegeben.

Das Gitarrenrätsel habe ich zu
 ABC + CDD = EBC
   -     -     -
   B * FFG = BEH
   =     =     =
 AII - JBB =  BE
umgeschrieben. Damit folgt (z.B.) nacheinander
 D = 0 (1. Zeile),
 F = 1 (2. Zeile),
 B = 8, G = 2 (2. Spalte),
 E = 9, H = 6 (2. Zeile),
 I = 7, C = 5 (1. Spalte).
Es bleibt (z.B. 3. Zeile) A = 4, J = 3.
Die Lösung ist somit zusammengefasst
 485 + 500 = 985
   -     -     -
   8 * 112 = 896
   =     =     =
 477 - 388 =  89.