Serie-22
Beitragsseiten
Aufgabe 6
258. Wertungsaufgabe"Mit den in der letzten Woche gefundenen Dreiecksteilen lassen sich viele Figuren legen", meinte Mike. (Zu benutzen sind die Ergebnisse der roten Aufgabe.) "Dann mach doch mal einen Vorschlag." " Nun, Du siehst doch, dass eines der 12 Teile wie ein regelmäßiges Sechseck aussieht. Mit welchen der 12 Teile, lässt sich wohl ein doppelt so großes Sechseck legen?" (4 blaue Punkte). "Mich würde ja mal interessieren, ob man aus allen 12 Teilen auch schöne Figuren legen kann," fragte Maria ihren Bruder.
"Sicher, aber wie groß mag wohl der kleinstmögliche Umfang einer solchen Figur sein, wenn eine Dreiecksseite drei Zentimeter groß ist?" 6 rote Punkte.
Lösung
Die Aufgaben 257 und 258 basieren auf dem Spiel "Verhext" nach Professor Haber. Die aus Dreiecken zusammengesetzten Teile heißen auch Polyiamonds. zum Weiterlesen
Blaue Aufgabe:
Es gibt eine Vielzahl von Möglichkeiten solche ein Sechseck zu legen. Es ist auch möglich aus 9 Figuren ein entsprechend drei mal so großes Sechseck zu legen.
Legt eine Figur aus allen Teilen, so besteht diese - sofern man keine Lücken im Inneren hat aus 72 Dreiecken. Durch die Beschränkung auf die gleichseitigen Dreiecke lässt sich recht leicht herleiten, dass die Zerlegung von 72 in 8*9 Dreiecke ein "kompaktes" Parallelogramm entsteht. Wie man ein solches legen kann, ist in dem obigen Hinweis entnehmbar.
Dort kann man auch die Länge des Umfangs auszählen. Allerings ergeben sich für das 6x12 Parallogramm 24x3 cm Randlinie, für ein 8X9 26x3 cm. Umso bemerkenswerter, dass diese legbare Figur nur 22x3cm Randlinie aufweist (stammt aus der Spielanleitung):
Ich lass eine endgültige Entscheidung mal noch offen.