Serie 40
- Details
- Zugriffe: 27379
Beitragsseiten
Aufgabe 11
479. Wertungsaufgabe
„Hallo Mike, das sieht ja aus wie ein zunehmender Mond mit einem Trapez“, sagte Lisa. „Du hast Recht. Bei meiner Konstruktion bin ich von dem Trapez ABCD ausgegangen. Die zueinander parallelen Seiten erkennst du im Bild und es gilt, dass die Seiten BC, CD und DA sind gleich lang und zwar 2,0 cm. Die Kante AB ist 3,0 cm lang. M ist von allen Punkten des Trapezes gleich weit weg. Die Kurven ADCB und AMB sind Kreisbögen.“
Wie groß ist der Radius des Kreise, der durch die vier Punkte des Trapezes verläuft? 5 blaue Punkte Konstruktionsbeschreibung bzw. Berechnung nicht vergessen.
8 rote Punkte gibt es für den Flächeninhalt der „Mondfläche.“ 4 rote Punkte gibt es dazu, wenn die Länge von AB gefunden wird, so dass die Fläche des „Mondes“ gleich der Fläche des Trapezes ist, wenn die sonstigen Vorgaben unverändert bleiben.
Termin der Abgabe 10.12.2015. Ultimo termine di scadenza per l´invio è il 10.12.2015. Deadline for solution is the 10th. December 2015. Date limite pour la solution 10.12.2015.
“Ciao Mike, ma questo sembra una luna crescente con un trapezio”, disse Lisa. “Hai Ragione. Con questa mia costruzione ero partito da un trapezio ABCD. I lati paralleli l´uno verso l´altro li riconosci sull´immagine e vale che i lati BC, CD e DA sono lunghi uguale, cioè 2,0 cm. Il bordo AB è lungo 3,0 cm. M dista da ogni punto del trapezio la stessa distanza. Le curve ADCB e AMB sono archi circolari.
Quant´è grande il raggio del cerchio che passa per i quattro punti del trapezio? 5 punti blu. Non dimenticate la descrizione della costruzione ed il calcolo.
Per il calcolo dell´area della superficie della luna ci sono 8 punti rossi. Ancora 4 punti rossi se si trova la lunghezza di AB cosicché l´area della luna diventi come quella del trapezio, se i valori rimangono invariati.
"Salut Mike, cela ressemble à un croissant de lune avec un trapèze», a déclaré Lisa. "Tu as raison. Dans ma conception, j’ai commencé avec le trapèze ABCD. Tu peux voir les côtés parallèles dans l’image et les côtés BC, CD et DA ont la même longueur de 2,0 cm chaque. Le bord AB a une longueur de 3,0 cm. M est à la même distance de tous les points du trapèze. Les courbes ADCB et AMB sont des arcs de cercle. "
Quel est le rayon du cercle qui passe par les quatre points du trapèze? 5 points bleus. Ne pas oublier d’écrire la conception et le calcul.
8 points rouges si on trouve la surface de la «face de lune." 4 points rouges supplémentaires si on trouve la longueur d’AB en sachant que les surfaces de la « lune » et du trapèze sont égale. Tous autres paramètres restent inchangés.
“Hi Mike, that looks like a waxing moon inside a trapezoid”, Lisa remarked.
“You are right. I started my construction with trapezoid ABCD. You can see the parallel sides in the picture. Sides BC, CD and DA are 2.0cm each. Side AB is 3 cm. M is equidistant from each of the trapezoid's vertices. Curves ADCB and AMB are arcs.”
What is the radius of the circle passing through the four vertices of the trapezoid? - 5 blue points; Include explanation of construction or calculation.
8 red points for the surface area of the “moon-shaped” area. 4 extra points are given for finding a length AB for which the area of the “moon” equals that of the trapezoid, everything else being as given above
Lösung/solution/soluzione/résultat:
Für die Lösung von blau und dem ersten Teil von rot hier die Lösungen von Hans (--> pdf <--) und Linus (--> pdf <--), danke.
2. Teil rot (die Gleichheit der Flächeninhalte von Mond und Trapez gilt für AB = Wurzel(3)*AD. Wenn ich Zeit habe, kommt hier noch mal ein auführlicherer Lösungsweg dazu.
Wenn man in den obigen Lösungen statt 3 cm 2*Wurzel(3) cm einsetzt, kann man die Gleichheit ja schon mal nachvollziehen. Der erste Beweis dazu stammt wahrscheinlich von Eudemos (Mathematiker in Pergamon).