Serie 40

Beitragsseiten

Aufgabe 12

480. Wertungsaufgabe

„Das ist ein besonderes Dreieck“, sagte Mike zu Bernd. „Die kürzeste Seite ist 3,0 cm groß und die Innenwinkel des Dreiecks verhalten sich wie 1: 2: 3.“ „Ach so“ . Wie groß ist der Umfang des Dreiecks? Für eine konstruktive Lösung (kurze Begründung) gibt es 4 blaue Punkte. Wird der Umfang rechnerisch ermittelt, gibt es stattdessen 5 blaue Punkte.
Für 5 rote Punkte sind die Größen der Innenwinkel eines gleichschenkligen Dreiecks gesucht. Die beiden gleichlangen Seiten des Dreiecks ABC seien je 8,0 cm. Auf einer dieser gleichlangen Seiten liegt ein Punkt D. Der Punkt D teilt die Seite im Verhältnis des goldenen Schnittes. Das längere Teilstück der geteilten Seite stimmt mit der Länge der Basis des gleichschenkligen Dreiecks überein.

Termin der Abgabe 17.12.2015. Ultimo termine di scadenza per l´invio è il 17.12.2015. Deadline for solution is the 17th. December 2015. Date limite pour la solution 17.12.2015.

fr

"Ceci est un triangle très spécial," Mike dit à Bernd. "Le côté le plus court est de 3,0 cm de longueur et les angles intérieurs du triangle ont un rapport de 1: 2: 3" « Ah bon ».
Quel est le périmètre du triangle? Pour une solution constructive (avec une courte explication) il y aura 4 points bleus. Si le résultat est obtenu par un calcul, il y aura 5 points bleus.
Pour 5 points rouges, il faut trouver les tailles des angles intérieurs d'un triangle isocèle. Les deux côtés égaux du triangle ABC font chacun 8,0 cm. Sur l'un de ces côtés de longueur égale, un point D existe. Le point D divise la page dans le rapport d'or. La partie étendue de la face divisée est conforme à la longueur de la base du triangle isocèle.

 en

“This is a special triangle”, Mike explained to Bernd. “It's shortest side is 3.0cm and the ratio of its internal angles is 1: 2: 3.”
“I see.”
What is the perimeter of the triangle? - 4 blue points for a solution by construction, 5 blue points for calculating the perimeter.
5 red points for finding the internal angles of a isosceles triangle. Let the two equal sides of triangle ABC both be 8.0cm. On one of these equal sides you find a point D. This point divides the side according to the golden ratio. The length of the longer part of the divided side is equal to the base of the isosceles triangle.
it.

Questo è un triangolo particolare”, disse Mike a Bernd. “Il lato più corto è grande 3,0 cm e gli angoli interni del triangolo si comportano 1:2:3.” “Ho capito”. Quant´è grande la circonferenza del triangolo? Per una soluzione costruttiva (con breve motivazione) si danno 4 punti blu. In caso di un calcolo della circonferenza si danno 5 punti blu.
Per 5 punti rossi sono da trovare le grandezze degli angoli interni di un triangolo isoscele. I due lati di stessa lunghezza del triangolo ABC siano ciascuno 8.0 cm. Su uno di questi lati isosceli si trova un punto D. Il punto D divide il lato nel rapporto del taglio d´oro. Il frammento più lungo del lato diviso corrisponde alla lunghezza della base del triangolo isoscele.

Lösung/solution/soluzione/résultat:

Lösung von Linus, danke. --> als pdf <--

You have no rights to post comments.
Zum Kommentieren muss man angemeldet sein.