Serie 47
Beitragsseiten
Aufgabe 4
556. Wertungsaufgabe
„Ist das ein Inkreis, der in dem gelben Dreieck zu sehen ist?“ fragte Lisa. „Das siehst du richtig. ABC ist ein gleichseitiges Dreieck (a = 10 cm). D, E und F sind die Fußpunkte der Höhen auf den Dreiecksseiten und bilden ihrerseits ein Dreieck.“, erwiderte Maria.
Die konstruktive Ermittlung des Radius des Inkreises des Dreiecks DEF wird mit 3 blauen Punkten belohnt. Für die Berechnung dieses Radius könnte man aber statt der 3 blauen Punkte 6 blaue Punkte erhalten.
Die Konstruktion (Höhenfußpunkte D, E, F) lassen sich in jedem spitzwinkligen Dreieck ABC ausführen. Ist der Schnittpunkt der Höhen auch in diesem Fall Mittelpunkt des Inkreises des Dreiecks DEF oder ist das nur beim gleichseitigen Dreieck der Fall? 8 rote Punkte
Termin der Abgabe 25.01.2018. Ultimo termine di scadenza per l´invio è il 25.01.2018. Deadline for solution is the 25th. January 2018. Date limite pour la solution 25.01.2018. Resoluciones hasta el 25.01.2018.
fr
"Est-ce un cercle inscrit dans le triangle jaune?" demanda Lisa. "Bien vue, c’est ça. ABC est un triangle équilatéral (a = 10 cm). D, E et F sont des points des hauteurs sur les côtés du triangle, formant également un triangle », a répondu Maria.
La détermination constructive du rayon du cercle inscrit du triangle DEF est récompensée par 3 points bleus. Pour le calcul de ce rayon, on peut obtenir 6 points bleus au lieu des 3 points bleus.
La construction (points de hauteur D, E, F) peut être effectuée dans n'importe quel triangle ABC à angle aigu. Le point d'intersection des hauteurs est-il aussi dans ce cas le centre du cercle inscrit du triangle DEF ou est-ce seulement le cas avec un triangle équilatéral? 8 points rouges Date limite pour la solution 25.01.2018.
sp
“Eso es un círculo inscrito dentro del triángulo amarillo?” le preguntó Lisa. “Exacto. ABC es un triángulo equilátero (a = 10cm). D, E y F son las plantas de las alturas de los lados del triángulo y esos forman otro triángulo.”, le contestó Maria.
Para la investigación constructiva del radio del círculo inscrito del triángulo DEF se recibe 3 puntos azules. Para los cálculos se recibe 6 puntos azules.
La construcción se puede realizar con cualquier triángulo actuángulo (D, E, F son las plantas). El punto de intersección de las alturas es siempre el centro del círculo inscrito DEF o solamente en el caso del triángulo equilátero? 8 puntos rojos Resoluciones hasta el 25.01.2018.
en
“Is that the incircle inside the yellow triangle?” Lisa asked.
“That’s right, ABC is an equilateral triangle (a=10cm). D, E and F are the bases of the altitudes on each side an are in turn the vertices of another triangle.”, Maria replied.
Get three blue points for finding the radius of the incircle of triangle DEF. For calculating this radius you could get 6 blue points instead of the three.
The construction (bases D, E, F) can be done in any acute-angled triangle ABC. Is the point of intersection of the altitudes in any case the centre of the incircle of triangle ABC or is it only in the case of an equilateral triangle? - 8 red points Deadline for solution is the 25th. January 2018.
it
“È un cerchio interno che si vede circoscritto a quel triangolo giallo?”, chiese Lisa. “Lo vedi giusto. ABC è un triangolo equilatero (a=10cm). D,E e F sono i piedi delle altezze sui lati del triangolo e a loro volta formano un triangolo.”, rispose Maria.
La ricerca costruttiva del raggio del cerchio interno del triangolo circoscritto DEF viene premiata con 3 punti blu. Per il calcolo di questo raggio invece dei 3 punti blu si potrebbero ricevere 6 punti blu.
La costruzione (Piedi d´altezza D,E,F) si lascia effettuare in ogni triangolo acuto ABC. Il punto d´intersezione è anche in questo caso punto centrale del cerchio interno del triangolo circoscritto DEF oppure questo è solo il caso in un triangolo equilatero? 8 punti rossi. Ultimo termine di scadenza per l´invio è il 25.01.2018.
Lösung/solution/soluzione/résultat:
Lösungen von Hans --> pdf <-- und Paulchen --> pdf <--, danke