Serie 62
Beitragsseiten
Aufgabe 4
736. Wertungsaufgabe
deu
„Wenn ich das richtig sehe, dann hast du in das rote Quadrat ABCD ein blaues regelmäßiges Sechseck EFGHIJ gezeichnet.“, sagte Lisa zu Maria. „Das siehst du genau richtig.“
Das Quadrat hat eine Seitenlänge von 6 cm. E,F,G und J des Sechsecks liegen auf den Seiten des Quadrates.
Wie viel Prozent des roten Quadrates werden durch das blaue Sechseck verdeckt? 6 blaue Punkte.
Ist es möglich, ein weiteres regelmäßiges Sechseck zu finden, das einerseits größer ist als das blaue und andererseits nicht über das rote Quadrat hinausragt? 6 rote Punkte
https://www.schulmodell.eu/aufgabe-der-woche.html
Termin der Abgabe 19.01.2023. Срок сдачи 19.01.2023. Ultimo termine di scadenza per l´invio è il 19.01.2023. Deadline for solution is the 19th. January 2023. Date limite pour la solution 19.01.2023. Soluciones hasta el 19.01.2023. Beadási határidő 2023.01.19. 截止日期: 2023.01.19. – 请用徳语或英语回答
chin
第736题
“如果我没看错的话,你在红色的正方形ABCD里边画了一个蓝色的正六边形EFGHIJ。” 丽莎对玛丽雅说。
“非常正确。”
正方形的边长为6厘米,六边形的顶点E、F、G、J 位于正方形的边上。
那么蓝色的六边形覆盖了红色正方形区域的百分比是多少? 6个蓝点。
是否有可能再找到一个既比蓝色区域大,又不超出红色正方形区域的正六边形? 6个红点
截止日期: 2023.01.19. – 请用徳语或英语回答
https://www.schulmodell.eu/2952-woch-chin.html
russ
«Если я не ошибаюсь, ты нарисовала синий правильный шестиугольник EFGHIJ в красном квадрате ABCD», — сказала Лиза Марии. "Совершенно верно."
У квадрата длина стороны 6 см. Точки E,F,G и J шестиугольника находятся на сторонах квадрата.
Какой процент красного квадрата покрыт синим шестиугольником? 6 синих очков.
Можно ли найти другой правильный шестиугольник, который больше синего шестиугольника и также не выходит за пределы красного квадрата ? 6 красных очков
hun
„Ha jól látom, akkor az ABCD piros négyzetbe egy EFGHIJ kék szabályos hatszöget rajzoltál“ – mondta Liza Máriának. „Ez pontosan így van.“ A négyzet oldalhossza 6 cm. A hatszög E, F, G és J pontjai a négyzet oldalain helyezkednek el. A piros négyzet hány százalékát takarja el a kék hatszög? 6 kék pont
Lehet-e egy másik szabályos hatszöget találni, amely egyrészt nagyobb, mint a kék, másrészt nem nyúlik túl a piros négyzeten? 6 piros pont
https://www.schulmodell.eu/2648-a-h%C3%A9t-feladata.html
frz
"Si j'ai raison, tu as dessiné un hexagone régulier bleu EFGHIJ dans le carré rouge ABCD", dit Lisa à Maria. "Tu as totalement raison."
Le carré a une longueur de côté de 6 cm. E,F,G et J de l'hexagone sont sur les côtés du carré.
Quel pourcentage du carré rouge est couvert par l'hexagone bleu ? 6 points bleus.
Est-il possible de trouver un autre hexagone régulier plus grand que le carré bleu d'une part, et ne dépassant pas le carré rouge d'autre part ? 6 points rouges
https://www.schulmodell.eu/2201-probleme-de-maths-de-la-semaine.html
esp
"Si lo veo bien, has dibujado un hexágono regular azul EFGHIJ en el cuadrado rojo ABCD", le dijo Lisa a María. "Lo ves exactamente así".
El cuadrado tiene 6 cm de lado. E,F,G y J del hexágono se encuentran en los lados del cuadrado.
¿Qué porcentaje del cuadrado rojo está cubierto por el hexágono azul? 6 puntos azules.
¿Es posible encontrar otro hexágono regular que, por un lado, sea más grande que el azul y, por otro, no sobresalga del cuadrado rojo? 6 puntos rojos.
https://www.schulmodell.eu/2412-ejercicio-de-matem%C3%A1ticas-semanal.html
en
„If I see it correctly, you have drawn a blue regular hexagon EFGHIJ in the red square ABCD," Lisa told Maria. "You're completely right about that."
The square has a side length of 6 cm. E,F,G and J of the hexagon lie on the sides of the square.
What percentage of the red square is covered by the blue hexagon? 6 blue points.
Is it possible to find another regular hexagon that is on the one hand larger than the blue one and on the other hand does not overlap the red square? 6 red points
Deadline for solution is the 19th. January 2023.
https://www.schulmodell.eu/1453-this-weeks-maths-problem.html
it
“Se lo vedo correttamente, allora hai disegnato un esagono regolare EFGHIJ nel quadrato rosso ABCD.”, diceva Lisa a Maria. “E’ giusto”.
Il quadrato ha una lunghezza di lato di 6 cm. E, F, G e J dell'esagono sono sui lati del quadrato.
Quale percentuale del quadrato rosso è coperta dall'esagono blu? 6 punti blu.
È possibile trovare un altro esagono regolare che sia più grande del quadrato blu e non si estenda oltre il quadrato rosso? 6 punti rossi
https://www.schulmodell.eu/1984-problema-di-matematica-della-settimana.html
Lösung/solution/soluzione/résultat/Решение:
Musterlösung von HeLoh, danke. --> pdf <--