Serie 58

Beitragsseiten

Serie 58

Hier werden die Aufgaben 685 bis 696 veröffentlicht.

Aufgabe 1

685. Wertungsaufgabe

Logikaufgabe

deu

Start Serie 58

685 Logikrätsel

Bernds Mutter war letzte Woche beim Klassentreffen gewesen. Sie war froh, dass sie sich mit vielen ihrer ehemaligen Mitschüler treffen konnte. Sie war Schülerin an einer Spezialschule für Sprachen gewesen.
Als sie nach Hause kam, konnte sie davon berichten.
Eine Gruppe, mit der sie sich unterhalten hatte, bestand aus Ben, Erik, Jason, Mirko und Ron. Bevor sie über die Ereignisse während der Schulzeit sprachen, erzählten die 5 Jungs von ihren Vätern, die jeweils ein besonderes Hobby hatten. (Goldwaschen, Stricken, Malen, Reiten, Zaubern) Geboren waren die Väter 1957, 1959, 1963, 1966 und der Jüngste im Jahr 1970. Sie kamen aus verschiedenen Städten Deutschlands: Berlin, Erfurt, Odenthal, Plauen bzw. Staffelstein.

Bernds Mutter hatte sich Folgendes gemerkt:

  1. Der im Jahr 1959 geborene Vater strickte gern, war aber weder der Vater von Erik noch von Ron.
  2. Der jüngste Vater wurde in Erfurt geboren.
  3. Der Vater von Ron wurde nicht 1963 geboren.
  4. Bens Vater, der kein Goldwäscher war, wurde im Jahr 1966 geboren, aber nicht in Staffelstein.
  5. In Odenthal wurde Mirkos Vater geboren.
  6. Der malende Vater von Jason war nicht der jüngste Vater.
  7. Der zaubernde Vater war nicht der älteste Vater, er wurde in Berlin geboren, war der Vater von Erik oder aber von Ron.

Welcher Vater gehört zu welchem Jungen, hat welches Hobby und stammt aus welcher Stadt? 6 blaue Punkte.

Vater von

Geburtsort

Geburtsjahr

Hobby

Ben

     

Erik

     

Jason

     

Mirko

     

Ron

     

Irgendwann wechselten die Themen, das Abendbrot wurde eingenommen und dann ging es weiter mit den schlimmen Zeiten von Ben. Der hatte es geschafft, in der zweiten Schulwoche in der neunten Klasse jeden Tag - Montag bis Freitag - zu spät zu kommen. (5, 10, 15 , 20 und einmal sogar 25 Minuten). Es betraf jedes Mal ein anderes Fach (Russisch, Chinesisch, Englisch, Französisch und Spanisch). Die Kurse zu Ungarisch und Italienisch waren nicht betroffen, da sie am Nachmittag stattfanden.

Die Lehrerinnen der betroffenen Fächer waren Frau Abel, Frau Beck, Frau Helm, Frau Koch und Frau Schmidt. Jede bekam eine andere Ausrede zu hören (Auto kaputt, Bahn verpasst, Fahrradkette gerissen, Unfall auf dem Schulweg, Wecker nicht geklingelt).

  1. Am Mittwoch traf es Russisch, aber es waren weniger Minuten als beim Verspäten mit der Bahn.
  2. Am Montag waren es nur 5 Minuten. Es betraf also nicht den Englischunterricht bei der Frau Abel.
  3. Die Verspätung von 15 Minuten erklärte er mit dem Unfall, der betroffene Unterricht war entweder der von Frau Beck oder von Frau Helm.
  4. Die Verspätung in Chinesisch schob er auf das kaputte Auto.
  5. Zu Spanisch kam er 20 Minuten zu spät. Das lag irgendwann nach dem Tag des Unterrichts bei Frau Schmidt, aber irgendwann vor dem Tag mit Chinesisch.
  6. Am Donnerstag waren es nicht 25 Minuten.
  7. Am Freitag betraf es den Unterricht bei Frau Helm.
  8. Frau Koch berichtete er von der kaputten Fahrradkette.

Ben hat heute eine Firma, die Zeitmanagement für Weiterbildungen organisiert.

Wie viele Minuten kam Bernd an den einzelnen Tagen zu spät? Welchen Unterricht betraf das und welches Fach und welche Lehrerin? 6 rote Punkte

Tag

Verspätung

Fach

Lehrerin

Grund

Montag

       

Dienstag

       

Mittwoch

       

Donnerstag

       

Freitag

       

Logikvorlage als pdf

Termin der Abgabe 23.9.2021. Срок сдачи 23.09.2021. Ultimo termine di scadenza per l´invio è il 23.09.1921. Deadline for solution is the 23th. September 2021. Date limite pour la solution 23.09.2021. Soluciones hasta el 23.09.2021. Beadási határidő 2021.09.23. 截止日期: 2021.09.23 - 请用徳语或英语回答。

chin

开始第58系列
第685题 逻辑题

贝恩德的妈妈上周参加了同学聚会。她很高兴见到以前的同学。她曾是一所语言学校的学生。当她回到家以后,她说起了这件事儿。
和她聊天的人里有本(Ben)、埃里克(Erik)、杰森(Jason)、米尔科(Mirko)和罗恩(Ron)。在他们聊起学生时代的一些事情之前,他们谈到了他们有着特殊爱好的父亲们。他们的爱好有淘金、编织、绘画、骑马、变魔术。
他们的父亲们分别出生于1957年, 1959年, 1963年, 1966年,最年轻的一位出生于1970年。他们来自德国不同的城市:柏林(Berlin)、埃尔福特(Erfurt)、奥登塔尔(Odenthal)、普劳恩(Plauen)和斯塔费尔施泰因(Staffelstein)。

贝恩德的妈妈记录了下边的内容:
1. 1959年出生的这位父亲很喜欢编织,但是他既不是埃里克(Erik)的父亲,也不是罗恩(Ron)的父亲。
2. 最年轻的这位父亲是在埃尔福特(Erfurt)出生的。
3. 罗恩(Ron)的父亲不是在1963年出生。
4. 本(Ben)的父亲不是淘金者。他出生于1966年,但不是在斯塔费尔施泰因(Staffelstein)出生的。
5. 米尔科(Mirko)的父亲是在奥登塔尔(Odenthal)出生的。
6. 杰森(Jason)的父亲是一位画家,但是他不是最年轻的。
7. 会魔术的这位父亲不是年纪最大的。他出生在柏林(Berlin),他有可能是埃里克(Erik)或者罗恩(Ron)的父亲。

请问:他们分别是谁的父亲?有什么爱好?来自于哪个城市? (6个蓝点)
685blue chin


下列人的父亲 出生地 哪年出生 爱好

本(Ben)
埃里克(Erik)
杰森(Jason)
米尔科(Mirko)
罗恩(Ron)

不知道什么时候大家换了话题,晚饭之后大家说到了本(Ben)糟糕的那段时光。在九年级开学的第二个星期本(Ben)几乎每天,从周一到周五都迟到。5分钟、10分钟、15分钟、20分钟,甚至有一次迟到25分钟。每一次都是在不同的课上,
俄语、汉语、英语、法语或者西班牙语。但是没有匈牙利语和意大利语,因为这两门课下午才有。教这几门课的老师是:阿贝尔老师(Frau Abel)、贝克老师(Frau Beck)、赫尔姆老师(Frau Helm)、科赫老师(Frau Koch)和施密特老师(Frau Schmidt)。
她们每个人听到的迟到理由也都不一样,有汽车坏了,没赶上车,自行车链子坏了,上学路上发生事故,以及闹钟没响。

  1. 周三是俄语课,迟到理由是错过了车。
    2. 周一只晚了5分钟。但是不是阿贝尔老师(Frau Abel)的英语课。
    3. 迟到15分钟的理由是遇到事故,这门课不是贝克老师(Frau Beck)的,就是赫尔姆老师(Frau Helm)的。
    4. 汉语课迟到的理由是汽车坏了。
    5. 西班牙语课迟到20分钟。这门课的第二天是施密特老师(Frau Schmidt)的课,前一天是汉语课。
    6. 周四迟到的时长不是25分钟。
    7. 周五是赫尔姆老师(Frau Helm)的课。
    8. 他告诉科赫老师(Frau Koch)迟到的原因是自行车链子坏了。

本(Ben)目前在管理一家公司,这个公司是给进修培训做时间管理的。

请问: 本(Ben)每天各迟到多长时间?在哪门课上,哪个科目?是哪个老师的课? (6个红点)
685red chin
时间 迟到时长 科目 老师 迟到理由

周一
周二
周三
周四
周五

截止日期: 2021.09.23 - 请用徳语或英语回答。

rus

Начало серии 58 685 Загадка по логике На прошлой неделе мать Бернда была на встрече класса. Она была счастлива встречаться со многими из своих бывших одноклассников. Она училась в специальной языковой школе. Вернувшись домой, она смогла об этом рассказать. Одна группа, с которой она разговаривала, состояла из Бена, Эрика, Джейсона, Мирко и Рона. Прежде чем говорить о том, что происходило в школе, пятеро парней рассказали о своих отцах, у каждого из которых было особое хобби. (мыть золото, вязание, рисование, верховая езда, магия). Отцы родились в 1957, 1959, 1963, 1966 годах, а самый младший - в 1970 году. Они произошли из разных городов Германии: из Берлина, Эрфурта, Одентала, Плауэна и Стаффельштейна. Мать Бернда запомнила следующее: 1. Родившийся в 1959 году отец любил вязать, но не был отцом Эрика или Рона.

  1. Самый молодой отец родился в Эрфурте. 3. Отец Рона не родился в 1963 году. 4. Отец Бена, который не был золотоискателем, родился в 1966 году, но не в Стаффельштейне. 5. Отец Мирко родился в Одентале. 6. Отец-рисовальщик Джейсона не был самым молодым отцом. 7. Отец по магии не был самым старым отцом, он родился в Берлине, был отцом Эрика или Рона. Какой отец принадлежит какому мальчику, имеет какое хобби и происходил из какого города? 6 синих очков.

Отец

место рождения

год рождения

хобби

Бена

     
Эрика      
Джейсона      
Мирко      
Рон      

В какой-то момент темы сменились, был подан ужин, а затем плохие времена Бена стали темой. Ему удавалось опаздывать каждый день второй недели учебы в девятом классе - с понедельника по пятнице. (5, 10, 15, 20 и один раз даже 25 минут). Каждый раз это касалось другого предмета (русский, китайский, английский, французский и испанский язык). Курсы венгерского и итальянского языков не пострадали, так как они проводились во второй половине дня. Учителями соответствующих предметов были г-жа Абель, г-жа Бек, г-жа Хельм, г-жа Кох и г-жа Шмидт. Каждая услышала другую отговорку (сломанная машина, опоздал на трамвай, сломанная велосипедная цепь, авария по дороге в школу, будильник не зазвонил). 1. В среду это касалось русского языка, но опоздание было меньше , чем при опоздании на трамвай. 2. В понедельник это было всего 5 минут. Так что это не относилось к урокам английского госпожи Абель. 3. Он объяснил задержку на 15 минут аварией, соответствующие занятия были либо от госпожи Бек, либо от госпожи Хельм. 4. За опоздание на китайский он свалил вину на сломанную машину. 5. Он опоздал на урок испанского на 20 минут. Это было когда-то после дня занятий госпожи Шмидт, но когда-нибудь до дня занятий китайского языка. 6. В четверг опоздание не было 25 минут. 7. В пятницу это касалось уроков госпожи Хельм. 8. Он рассказал госпоже Кох о сломанной велосипедной цепи. Сегодня у Бена есть фирма, которая занимается организацией управления временем для повышений квалификации. На сколько минут Бернд опаздывал каждый день? Какие уроки касались этого, какого предмета и какого учителя? 6 красных очков

День

Опоздание

Предмет

Учительница

Отговорка

Понедельник

       

Вторник

       

Среда

       

Четверг

       

Пятница

       

hun

Bernd anyja a múlt héten osztálytalálkozón vett részt. Nagyon örült, hogy sok régi osztálytársával találkozhatott. Egy nyelvi tagozatos iskola tanulója volt.

Ahogy hazament, így tudósított róla.

Az egyik csoport, akikkel beszélgetett Ben, Erik, Jason, Mirko és Ron volt. Mielőtt az iskolai eseményeket felelevenítették, az 5 fiú az apukájáról mesélt, akiknek mind különleges hobbijuk volt (Aranymosás, kötés, festés, lovaglás, bűvészkedés). Az apukák 1957, 1959, 1963, 1966 és a legfiatalabb 1970-ben születtek. Különböző német városokból származtak: Berlin, Erfurt, Odenthal, Plauen és Staffelstein.

Bernd anyukája a következőket jegyezte meg:

1.Az 1959-ben született apa szívesen kötött, de nem volt sem Erik, sem Ron apja.
2. A legfiatalabb apa Erfurtban született.
3. Ron apja nem 1963-ban született.
4. Ben apja, aki nem aranymosó volt, 1966-ban született, de nem Staffelsteinban.
5. Odenthalban született Miklos apja.
6. Jason festő apja nem a legfiatalabb apa volt.
7. A bűvészkedő apa nem a legidősebb volt, Berlinben született, vagy Erik, vagy Ron apja volt.
Melyik apa melyik hobbival melyik fiúé volt, milyen hobbival és melyik városból? 6 kék pont

Valamikor témát váltottak, vacsoráztak, aztán Ben legnehezebb időszakáról dumáltak. Sikerült neki a második héten a kilencedik osztályban minden nap, hétfőtől péntekig elkésni (5, 10, 15 , 20 sőt egyszer 25 perccel). Minden alkalommal másik tantárgyról késett el (orosz, kínai, angol, francia és spanyol). A magyar és olaszórákat ez nem érintette, mert azok délután voltak.

Az érintett tantárgyak tanárai (Abel, Beck, Helm, Koch és Schmidt tanárnők). Mindegyikük más kifogást kapott (autó elromlott, vonatot lekéste, biciklilánc elszakadt, baleset az úton, az ébresztőóra nem csengett).

  1. Szerdán oroszról késett, de ez kevesebb perc volt, mint amikor a vonat késett.
    2. Hétfőn csak 5 percet késett. Ez nem az angolórát érintette Abel tanárnővel.
    3. A 15 perces késést a balesettel magyarázta, az érinett óra vagy Beck, vagy Helm tanárnő órája volt.
    4. A kínai óráról való késést a tönkrement autóra fogta.
    5. Spanyolra 20 perces késéssel érkezett. Ez valamikor Schmidt tanárnő órája utáni, de valahogy a kínai óra előtti napon történt.
    6. Csütörtökön nem 25 percet késett.
    7. Pénteken Helm tanárnőtől késett el.
    8. Koch tanárnőnek mesélt a tönkrement bicikliláncról.

Bennek ma egy olyan cége van, amelyik továbbképzések időbeosztását szervezi. Hány perces késéssel érkezett melyik napon Bernd? Melyik órát érintette ez, melyik tárgyból és melyik tanárnőnél? 6 piros pont

frz

énigmes logiques

La mère de Bernd était allée à la réunion de classe la semaine dernière. Elle était heureuse de rencontrer plusieurs de ses anciens camarades de classe. Elle avait été élève dans une école spéciale de langues.
Quand elle est rentrée chez elle, elle a pu en parler.
Un groupe auquel elle avait parlé était composé de Ben, Erik, Jason, Mirko et Ron. Avant de parler de ce qui s'est passé pendant l'école, les 5 garçons ont parlé de leurs pères, qui avaient chacun un passe-temps particulier. (Orpaillage, tricot, peinture, équitation, magie) Les pères sont nés en 1957, 1959, 1963, 1966 et le plus jeune en 1970. Ils venaient de différentes villes d'Allemagne : Berlin, Erfurt, Odenthal, Plauen et Staffelstein.
La mère de Bernd avait noté ce qui suit.

  1. Né en 1959, son père adorait tricoter, mais n'était ni le père d'Erik ni de Ron.
  2. Le plus jeune père est né à Erfurt.
  3. Le père de Ron n'est pas né en 1963.
  4. Le père de Ben, qui n'était pas orpailleurs, est né en 1966, mais pas à Staffelstein.
  5. Le père de Mirko est né à Odenthal.
  6. Le père peintre de Jason n'était pas le plus jeune père.
  7. Le père magicien n'était pas le père aîné, il est né à Berlin, était le père d'Erik ou de Ron.

Quel père appartient à quel garçon, a quel hobby et vient de quelle ville ? 6 points bleus.

Père de

Né à

Année naissance

Hobby

Ben

     

Erik

     

Jason

     

Mirko

     

Ron

     

À un moment donné, les sujets ont changé, le dîner a été pris et les mauvais moments de Ben ont continué. Il avait réussi à être en retard tous les jours de la deuxième semaine d'école en neuvième année - du lundi au vendredi. (5, 10, 15, 20 et une fois même 25 minutes) A ​​chaque fois il s'agissait d'un cours différent (russe, chinois, anglais, français et espagnol). Les cours de hongrois et d'italien n'ont pas été affectés car ils ont lieu l'après-midi.

 Les professeurs des matières concernées étaient Mme Abel, Mme Beck, Mme Helm, Mme Koch et Mme Schmidt. Tout le monde a dû entendre une excuse différente. (Voiture cassée, train manqué, chaîne de vélo cassée, accident sur le chemin de l'école, réveil pas sonné)

  1. Mercredi, il ça a touché les cours de russe, mais cela a duré moins de minutes que lorsque le train a été retardé.
  2. Lundi, ce n'était que 5 minutes. Cela ne s'appliquait donc pas aux cours d'anglais de Frau Abel.
  3. Il a expliqué le retard de 15 minutes avec l'accident, la classe touchée était soit celle de Mme Beck ou de Mme Helm.
  4. Il a mis le retard en cours de chinois sur la voiture cassée.
  5. Il avait 20 minutes de retard pour les cours d'espagnol. C'était quelque temps après la journée de classe avec Mme Schmidt, mais quelque temps avant la journée des cours de chinois.
  6. Ce n'était pas 25 minutes de retard jeudi.
  7. Le vendredi, il s'agissait des leçons avec Mme Helm.
  8. Il a parlé à Mme Koch de la chaîne de bicyclette cassée.

Aujourd'hui, Ben a une entreprise qui organise la gestion du temps pour la formation continue.
Combien de minutes Bernd avait-il de retard chaque jour ? Quelles leçons cela concernait-il et quelle matière et quelle professeure ? 6 points rouges

Jour

Retard

Cours

Professeure

Raison

Lundi

       

Mardi

       

Mercredi

       

Jeudi

       

Vendredi

       

esp

Inicio Serie 58

685 problema de lógica

La madre de Bernd había estado en la reunión de la clase la semana pasada. Se alegró de poder reunirse con muchos de sus antiguos compañeros de clase. Había sido alumna de una escuela especial de idiomas.

Cuando llegó a casa, pudo contar de la reunión.

Un grupo con el que había hablado estaba formado por Ben, Erik, Jason, Mirko y Mike. Antes de que hablaran de lo que había sucedido durante sus días de escuela, los 5 chicos le hablaron de sus padres, que tenían cada uno una afición especial (buscar oro, tejer, pintar, montar a caballo, magia). Los padres nacieron en 1957, 1959, 1963, 1966 y el más joven en 1970. Procedían de diferentes ciudades de Alemania: Berlín, Erfurt, Odenthal, Plauen y Staffelstein respectivamente.

La madre de Bernd había anotado lo siguiente.

  1. Al padre, nacido en 1959, le gustaba tejer, pero no era ni el padre de Erik ni el de Ron.
  2. El padre más joven nació en Erfurt.
  3. El padre de Ron no nació en 1963.
  4. El padre de Ben, que no era buscador de oro, nació en 1966, pero no en Staffelstein.
  5. El padre de Mirko nació en Odenthal.
  6. El padre pintor de Jason no era el padre más joven.
  7. El padre que hizo la magia no era el padre mayor, nació en Berlín y era el padre de Erik o de Ron.

¿Qué padre pertenece a qué niño, tiene qué afición y es de qué ciudad? 6 puntos azules.

Padre de

Lugar de nacimiento

Año de nacimiento

Afición 

Ben

     

Erik

     

Jason

     

Mirko

     

Ron

     

En algún momento, durante la cena, cambiaron los temas y se continuó con los malos tiempos de Ben. Él había llegado tarde todos los días en la segunda semana de clases en el noveno grado, de lunes a viernes (5, 10, 15 , 20 y una vez incluso 25 minutos). Afectó a una asignatura diferente cada vez (ruso, chino, inglés, francés y español). Los cursos de húngaro e italiano no se vieron afectados porque tuvieron lugar por la tarde.

Los profesores de las asignaturas afectadas eran las señoras Abel, Beck, Helm, Koch y Schmidt. Para cada uno tenía una excusa diferente (coche roto, tren perdido, cadena de bicicleta rota, accidente de camino al colegio, despertador no sonado).

  1. El miércoles fue ruso, pero fueron menos minutos que cuando el tren se retrasó.
  2. El lunes sólo fueron 5 minutos. Así que no afectó a la clase de inglés de la Sra. Abel.
  3. Explicó el retraso de 15 minutos con el accidente, la clase afectada era la de la Sra. Beck o la de la Sra. Helm. 
  4. Culpó del retraso en chino al coche averiado. 
  5. Llegó 20 minutos tarde a Español. Eso fue en algún momento después del día de la lección con la Sra. Schmidt, pero en algún momento antes del día con el chino. 
  6. El jueves no fueron 25 minutos.
  7. El viernes fue para la lección con la señora Helm.
  8. Le contó a la señora Koch lo de la cadena rota de la bicicleta.

Ahora, Ben tiene una empresa que organiza la gestión del tiempo para la formación continuada.

¿Cuántos minutos de retraso tuvo Bernd cada día? ¿A qué lecciones se refiere, a qué asignatura y a qué profesor? 6 puntos rojos

Día

Retraso

Asignatura

Profesora

Excusa

Lunes

       

Martes

       

Miércoles

       

Jueves

       

Viernes

       

en

logical riddle

Bernd's mother went on a class reunion last week. She was happy to meet her former classmates. She was a student at a special language school.

When she came home, she began talking about it.

One group she talked to included Ben, Erik, Jason, Mirko and Ron. Before they talked about the events during the school time, the five boys told about their fathers, who each had a special hobby. (panning for gold, knitting, drawing, horse riding, performing conjuring tricks) The fathers where born in 1957, 1959, 1963, 1966 and the youngest of them in the year 1970. They came from different cities in Germany: Berlin, Erfurt, Odenthal, Plauen resp. Staffelstein.

Bernd's mother remembered the following things.

  1. The father born in 1959 really liked knitting, but he wasn't the father of whether Erik or Ron.
  2. The youngest father was born in Erfurt.
  3. The father of Ron wasn't born in 1963.
  4. Ben's father didn't pan for gold, was born in 1966, but not in Staffelstein.
  5. In Odenthal Mirko's father was born.
  6. The drawing father of Jason was not the youngest father Vater.
  7. The conjuring father wasn't the oldest father, he was born in Berlin, was the father of either Erik or Ron.

Which father belongs to which boy, has which hobby and comes from which city? 6 blue points.

father of

birth place

year of birth

hobby

Ben

     

Erik

     

Jason

     

Mirko

     

Ron

     

At some point topics changed, the dinner was eaten and then it was about the difficult times of Ben. He managed to be late for school on every day – Monday till Friday – in the second school week, during the ninth class . (5, 10, 15 , 20 and one time even 25 minutes) Each time this happened for a different subject (Russian, Chinese, English, French and Spanish). The Hungarian and Italian classes were not affected, because they took place in the afternoon.

The teachers of the affected subjects where Mrs. Abel, Mrs. Beck, Mrs. Helm, Mrs. Koch and Mrs Schmidt. Each got to listen to a different excuse. (car broken, missed the train, bicycle chain torn apart, accident on the way to school, alarm clock didn't ring)

  1. On Wednesday it happened at the Russian lesson, but it where less minutes than the excuse for missing the train.
  2. On Monday it where five minutes. It didn't happen at the English lesson of Mrs. Abel.
  3. The 15 minute delay he explained with an accident, the affected subject was either the one of Mrs. Beck or the one of Mrs. Helm.
  4. The delay for Chinese he excused with a broken car.
  5. For Spanish he was twenty minutes late. This happened someday after the lesson of Mrs. Schmidt, but someday before the Chinese lesson.
  6. On Thursday it weren't 25 minutes.
  7. On Friday it affected the subject of Mrs. Helm.
  8. Mrs. Koch he excused to mentioning a torn bicycle chain.

Today Ben has got a company for time management, who organises advanced training in time management.

How many minutes was Bernd on each single day? Which subject with which teacher was affected and what excuse did he use? 6 red points

day

delay

subject

teacher

excuse

Montag (Monday)

       

Dienstag (Tuesday)

       

Mittwoch (Wednesday)

       

Donnerstag (Thursday)

       

Freitag (Friday)

       

Deadline for solution is the 23th. September 2021.

it

Enigma di logica

La settimana scorsa la mamma di Bernd ha partecipato ad un incontro di ex compagni di classe. Era contenta di aver incontrato tanta gente di questi tempi. Era stata alunna in una scuola linguistica. Tornata a casa ne raccontava.

Un gruppo col quale aveva chiacchierato consisteva di Ben, Erik, Jason, Mirko e Ron. Prima di parlare degli accaduti all’epoca, i 5 ragazzi raccontavano dei loro padri. Ognuno di essi aveva un hobby straordinario (cercare oro, lavorare a maglia, pitturare, cavalcare, fare incantesimi). I padre erano nati negli anni 1957, 1959, 1963, 1966 e 1970. Erano originari di diverse città tedesche: Berlin, Erfurt, Odenthal, Plauen e Staffelstein.

La madre di Bernd si ricordava il seguente:

  1. Il padre che era nato nel 1959 amava lavorare a maglia, ma non era il padre ne di Erik ne di Ron.
    2. Il padre più giovane era nato a Erfurt.
    3. Il padre di Ron non era nato nel 1963.
    4. Il padre di Ben, che non era il cercatore d’oro, era nato nel 1966, ma non a Staffelstein.
    5. Qdenthal è la città di nascita del padre di Mirko.
    6. Il padre che pitturava non era il padre piu giovane.
    7. Il padre che faceva incantesimi non era il più anziano. Era però nata a Berlin ed era il padre o di Erik o di Ron.

Quale padre appartiene a quale ragazzo, quale hobby ha e quando e dove è nato? 6 punti blu

Padre di

Luogo di nascita

Anno di nascita

Hobby

Ben

     

Erik

     

Jason

     

Mirko

     

Ron

     

Durante la cena e si ricordavano dei tempi brutti di Ben. Nella seconda settimana della nona classe era riuscito di essere ogni giorno – lunedì a venerid – in ritardo. (5, 10, 15, 20 ed una volta addirittura 25 minuti). Ogni giorno toccava un’altra materia (russo, cinese, inglese, francese e spagnolo). Non toccava però i corsi di ungherese ed italiano, dato che avevano luogo nel pomeriggio. Le insegnante erano le Signore Abel, Beck, Helm, Koch e Schmidt. E per ognuna aveva una scusa diversa. (macchina guasta, perso il treno, catena della bicicletta spezzata, incidente sul tragitto ccasa e scuola, la sveglia che non suonava).

  1. Mercoledì toccava il russo, ma erano meno minuti di ritardo che all’occasione col treno perso.
    2. Lunedì erano solo 5 minuti. Quindi non toccava la lezione di inglese della Sig.a Abel.
    3. Il ritardo di 15 minuti spiegava con l’incidente. La lezione era o quella della Sig.a Beck o di Sig.a Helm.
    4. Come causa per il ritardo in cinese sceglieva la macchina guasta.
    5. In spagnolo aveva un ritardo di 20 minuti. Aveva luogo in un giorno dopo la lezione della Sig.a Schmidt, ma prima del giorno col cinese.
    6. Giovedì non erano 25 minuti.
    7. Venerdì toccava la classe della Sig.a Helm.
    8. La Sig.a Koch raccontava della catena della bicicletta spezzata.

Attualmente, Ben è titolare di una ditta che organizza la gestione di tempo per istruzione ulteriore.

Quanti minuti Ben era in ritardo? Quale lezione toccava e quale professoressa? E quale scusa sceglieva? 6 punti rosso

Giorno

Ritardo

Lezione

Insegnante

Causa

lunedì

       

martedì

       

mercoledì

       

giovedì

       

venerdì

       

Lösung/solution/soluzione/résultat/Решение:

 Hier das Ergebnis der Lösung von Heloh, danke. --> pdf <--


Aufgabe 2

686. Wertungsaufgabe

deu

686

Ihr wisst ja, ich bin hier für klassische Aufgaben zuständig. Und diese Konstruktion ist wirklich überraschend.“, sagte der Opa von Bernd und Maria. „Lass sehen“, sagten die beiden.
Alle Kreise haben den Radius 1 (cm). Der erste Kreis hat den Mittelpunkt M. AC und DE sind senkrecht zueinander. Die Mittelpunkte der unteren Kreise und der Punkt A liegen alle auf einer Parallelen zu DE. Es wird das gleichseitige Dreieck DMF konstruiert. Die Verlängerung von MF führt auf den Mittelpunkt M1. Der Rest ergibt sich dann einfach.
Wie groß ist der Flächeninhalt des roten Dreiecks FEM? 4 blaue Punkte.
Das Überraschende der Konstruktion ist die Länge der Seite a des blauen Dreiecks. Wieso? 4 rote Punkte.

Termin der Abgabe 30.9.2021. Срок сдачи 30.09.2021. Ultimo termine di scadenza per l´invio è il 30.09.1921. Deadline for solution is the 30th. September 2021. Date limite pour la solution 30.09.2021. Soluciones hasta el 30.09.2021. Beadási határidő 2021.09.30. 截止日期: 2021.09.30 – 请用徳语或英语回答。

chin

第686题

686

 
“你们是知道的,我在这儿负责一些经典的习题。这个构图真的很令人惊奇”。贝恩德和玛丽雅的爷爷说。
“让我们看一下”。两个孩子说。

图中所有圆的半径都是1厘米,第一个圆的圆心是点M。
AC和DE是互相垂直的。
下边的几个圆的圆心以及点A都在DE的一条平行线上。这样一个等边三角形DMF就被构建出来了。圆心M1是在MF的延长线上。
剩下的就很容易了。

那么红色三角形FEM的面积是多大? 4个蓝点
这个构图的令人惊讶之处是蓝色三角形边长a的长度。为什么? 4个红点

截止日期: 2021.09.30 – 请用徳语或英语回答。

rus

686

«Вы знаете, я здесь отвечаю за классические задачи. И эта конструкция действительно удивительна», сказал дедушка Бернда и Марии. «Посмотрим», сказали оба. У всех окружностей радиус 1 (см). Первая окружность имеет центр M. AC и DE перпендикулярны друг другу. Центры нижних окружностей и точка A лежат на параллели к DE. Построен равносторонний треугольник DMF. Продолжение MF приводит к средней точке M1. Остальное потом просто вытекает. Насколько велика площадь красного треугольника FEM? 4 синих очка. Самое удивительное в конструкции - это длина стороны a синего треугольника. Почему? 4 красных очка.

hun

686

„Tudjátok biztos, hogy itt én vagyok a klasszikus feladatok felelőse. Ez a szerkesztés valóban meglepő.” – mondta Bernd nagyapja Máriának. „Hagy nézzük!” – mondták mindketten.
Minden kör sugara 1 (cm). Az első kör középpontja M. AC ÉS DE párhuzamosak egymással. Az alsó körök középpontja és az A pont mind egy párhuzamosan helyezkednek el DE-vel. megszerkesztjük az egyenlő oldalú DMF háromszöget. MF meghosszabbítása az M1 középponthon vezet. A maradék egyszerű. Mekkora a területe a piros FEM háromszögnek? 4 kék pont
A meglepetés a szerkesztésben a kék háromszög „a” oldalának hossza, Hogyan? 4 piros pont

frz

686

« Vous savez, je suis responsable des exercices classiques ici. Et cette construction est vraiment surprenante », a déclaré le grand-père de Bernd et Maria. « Voyons, » dirent les deux.
Tous les cercles ont un rayon de 1 (cm). Le premier cercle a le centre M. AC et DE sont perpendiculaires l'un à l'autre. Les centres des cercles inférieurs et le point A se trouvent tous sur une parallèle à DE. Le triangle équilatéral DMF est construit. L'extension de MF conduit au point milieu M1. Le reste se passe alors tout simplement.
Quelle est l'aire du triangle rouge FEM ? 4 points bleus.
La chose surprenante à propos de la construction est la longueur du côté a du triangle bleu. Pourquoi? 4 points rouges.

esp

686

"Sabéis que soy el responsable para las tareas clásicas. Esta vez, tengo una construcción realmente sorprendente", dijo el abuelo de Bernd y María.
"Vamos a ver", dijeron los dos.
Todos los círculos tienen el radio 1 (cm). El primer círculo tiene el centro M. AC y DE son perpendiculares entre sí. Los centros de los círculos inferiores y el punto A están todos encima de una paralela a DE. Se construye el triángulo equilátero DMF. La prolongación de MF conduce al centro M1. El resto es sencillo entonces.
¿Cuál es el área del triángulo rojo FEM? 4 puntos azules.
Lo sorprendente de la construcción es la longitud del lado a del triángulo azul. ¿Por qué? 4 puntos rojos.

en

686

“You know that I'm responsible for the classic tasks. And this construction is really surprising.”, Bernd's and Maria's grandpa said. “Let's see”, both said.
All circles do have the radius 1 (cm). The first circle does have the center M. AC and DE are perpendicular to each other. The center of the lower circles and point A are all situated on a parallel to DE. The equilateral triangle DMF gets constructed. The extension of MF goes along to the center M1. The rest comes about easily.
How big is the area of the red triangle FEM? 4 blue points.
The surprising thing of the construction is the length of side a of the blue triangle. Why? 4 red points.

it

686

„Come sapete bene, sono io il responsabile di compiti classici.E questa costruzione è veramente sorprendente.”, diceva il nonno di Bernd e Maria. “Facci vedere!”, chiedevano i due.
Tutti i cerchi hanno un raggio di 1 (cm). Il centro del primo è M. AC e CE sono ortogonali. Tutti i centri dei cerchi in basso sono situati su una parallela di DE. Viene costruito il triangolo equilatero DMF. Il prolungamento di MF porta al centro M1. Il resto è facile.
Qual’è la superficie del triangolo rosso FEM? 4 punti blu
Il fatto sorprendente di questa costruzione è la lunghezza del lato a del triangolo blu. Perchè? 4 punti rossi

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Paulchen, danke --> pdf <--
Hier noch ein kleines Video dazu, produziert von Brutenis Gliwa (z. Z. Uni Rostock), danke. --> video <--


Aufgabe 3

687. Wertungsaufgabe

deu

„Was wird das?“, fragte Bernd seine Schwester. „Das wird eine besondere Lostrommel für die Weihnachtslotterie. Die soll so beschaffen sein, dass die 1000 Lose gut und sicher hineinpassen.“, sagte Maria.
Jedes Los kostet einen Euro. Es sind genau 10 Lose dabei, die jeweils 60 Euro Gewinn erbringen.
Wie groß ist die Wahrscheinlichkeit für ein Gewinnlos, wenn man als erster ein Los kauft? 2 blaue Punkte
Wie groß ist die Wahrscheinlichkeit für ein (mindestens) Gewinnlos, wenn man als erster gleich 50 Lose kauft? 2 rote Punkte

Termin der Abgabe 07.10.2021. Срок сдачи 07.10.2021. Ultimo termine di scadenza per l´invio è il 07.10.1921. Deadline for solution is the 7th. October 2021. Date limite pour la solution 07.10.2021. Soluciones hasta el 07.10.2021. Beadási határidő 2021.10.07. 截止日期: 2021.10.07 – 请用徳语或英语回答。

chin

第687题
“这会是什么?” 伯恩德问他的妹妹。
“这会是一个圣诞节彩票的特别摇奖箱。这个摇奖箱里要确保放得下1000张彩票。” 玛丽雅说。
每张彩票的价格是1欧元,其中有10张彩票可以赢得60欧元。
那么买第一张彩票的人中奖概率是多少? 2个蓝点。pdf
第一个直接买50张彩票的人中奖概率是多少? 2个红点。
截止日期: 2021.10.07 – 请用徳语或英语回答。

rus

«Что это будет?» - спросил Бернд у сестры. «Это будет специальный барабан для рождественской лотереи. Он должен быть сделан таким образом, чтобы 1000 билетов поместились хорошо и надёжно», - сказала Мария. Каждый билет стоит один евро. Есть 10 лотерейных билетов с выигрышом 60 евро. Если вы первым купите билет, какова вероятность выигрыша? 2 синих очка Какова вероятность выигрыша, если вы первым купите сразу 50 билетов? 2 красных очка 

hun

„Ez mi lesz?” – kérdezte Bernd a nővérét. „Ez egy különleges dob a karácsonyi lottóhoz. Arra szolgál, hogy 1000 sorsjegy jól és biztosan beleférjen.” – mondta Mária.
Minden sorsjegy egy euróba kerül. 10 sorsjegy van köztük, amelyik nyereménye 60 euró. Mekkora a valószínűsége egy nyereménynek, ha az ember először egy sorsjegyet vásárol? 2 kék pont
Mekkora a valószínűsége egy nyereménynek, ha az ember rögtön 50 sorsjegyet vesz? 2 piros pont

frz

« Qu'est-ce que ça va être ? » demanda Bernd à sa sœur. « Ce sera un petit tambour de loterie pour la loterie de Noël. Cela devrait être fait de manière que les 1000 billets s'intègrent bien et en toute sécurité », a déclaré Maria.
Chaque ticket de loterie coûte un euro. Il y a 10 tickets avec un gain de 60 euros.
Si on est le premier à acheter un ticket de loterie, quelle est la probabilité qu'un ticket soit gagnant ? 2 points bleus
Quelle est la probabilité d'un ticket gagnant si on est le premier à acheter 50 tickets ? 2 points rouges

esp

"¿Qué va a ser esto?", preguntó Bernd a su hermana. "Va a ser un bombo especial para la lotería de Navidad. Debe hacerse de tal manera que los 1.000 billetes quepan seguramente", dijo María.
Cada billete cuesta un euro. Hay 10 boletos en la lotería, que darán un premio de 60 euros.
¿Cuál es la probabilidad de obtener un boleto ganador si eres el primero en comprarlo? 2 puntos azules
¿Cuál es la probabilidad de obtener un boleto ganador si eres el primero en comprar 50 boletos? 2 puntos rojos

en

“What is that?”, Bernd asked his sister. “That's going to be a special lottery wheel for the Christmas lottery. It should be designed that way, that 1000 lottery tickets fit in good and save.”, Maria said.
Every lottery ticket costs one Euro. There are 10 lottery tickets, which will carry a yield of 60 Euros .
How big is the probability for one winning lottery ticket, if you are the first person and buy one lottery ticket? 2 blue points
How big is the probability for one winning lottery ticket, if you are the first person and buy 50 lottery tickets? 2 red points

it

“Cosa stai facendo?”, Bernd chiedeva a sua sorella. “Sto fabbricando un’ urna girevole molto particolare per la lotteria natalizia. Deve essere abbastanza grande per far entrare i 1000 biglietti bene e sicuri.”, diceva Maria.
Ogni biglietto della lotteria costa un Euro. Entro i biglietti ci sono 10 vincenti, ognuno rende un premio di 60 €.
Qual’è la probabilità per un biglietto vincente per chi compra per primo un biglietto? 2 punti blu
Qual’è la probabilità per un biglietto vincente, per chi compra come primo già 50 biglietti? 2 punti rossi

Lösung/solution/soluzione/résultat/Решение:

 Musterlösung von Karlludwig, vielen Dank. --> pdf <--


Aufgabe 4

688. Wertungsaufgabe

„Schau mal Mike. Ich habe einen Papierstreifen – AB=11 cm lang und 1 cm breit ausgeschnitten.

688

Die Punkte C, D und E habe ich so markiert, dass fast jede Streckenlänge von 1, 2, 3, …, 10 und 11 cm durch zwei dieser Punkte entstehen kann – nur eine Streckenlänge fehlt.“, sagte Lisa. Mike schaute sich den Streifen an und war ganz erstaunt. Er überlegte eine Weile, dann konnte er Lisa einen anderen 11 cm langen Streifen zeigen, der auch solch eine Einteilung hatte. Die kürzeste Strecke von 1 cm lag dabei aber nicht am Rand des Streifens.
Wie könnte der Streifen von Mike ausgesehen haben? 3 blaue Punkte
Bernd fand sogar einen Streifen von AB=17 cm Länge. Er hatte dort 4 Punkte - C, D, E und F – so verteilt, dass fast alle Strecken von 1 bis 17 cm gebildet werden konnten – maximal drei Streckenlängen dürfen fehlen. Wie sah der wohl aus? 4 rote Punkte

Termin der Abgabe 14.10.2021. Срок сдачи 14.10.2021. Ultimo termine di scadenza per l´invio è il 14.10.1921. Deadline for solution is the 14th. October 2021. Date limite pour la solution 14.10.2021. Soluciones hasta el 14.10.2021. Beadási határidő 2021.10.14. 截止日期: 2021.10.14 – 请用徳语或英语回答。

chin

第688题

688

“迈克,看!我剪了一张纸条,它的长AB是11厘米,宽是1厘米。点C、D 和E我是这样标注的:1,2,3... ...10以及11厘米这些线段长度,差不多每条都可以通过这些点中的其中两个点来呈现出来,只有一条线段的长度是缺失的。”丽莎说。
迈克看了纸条后,完全惊呆了。他思考了一会儿,然后他给丽莎看了另外一条11厘米长的也是这样的划分的纸条。不过1厘米长的最短的线段不是在纸条的边缘。
那么迈克的纸条看起来能是什么样子? 3个蓝点

贝恩德甚至也发现了一个AB为17厘米长的纸条。在那儿他是这样分配C,D, E, 和F四个点的:从1到17厘米的所有线段能够被标出,允许最多缺失三条线段的长度。
那么它看起来又是怎么样的呢? 4个红点

截止日期: 2021.10.14 – 请用徳语或英语回答。

rus

«Смотри, Майк. Я вырезала из бумаги полоску - АВ = 11 см в длину и 1 см в ширину.

688

Я отметила точки C, D и E таким образом, чтобы каждый отрезок длиной 1, 2, 3, ..., 10 и 11 см кроме одного может быть создан через две из этих точек », сказала Лиза. Майк посмотрел на полосу и был удивлён. Он подумал немного, потом смог показать Лизе другую полосу длиной 11 см, у которой тоже было такое разделение. Однако кратчайший отрезок в 1 см при этом не был на краю полосы.
Как могла бы выглядеть полоска Майка? 3 синих очка
Бернд даже нашёл полосу длиной AB = 17 см. Там у него были 4 точки - C, D, E и F - распределены таким образом, чтобы можно было сформировать почти все отрезки длиной от 1 до 17 см — максимально отрезки трёх длин могут отсутствовать. Как, пожалуй, она выглядела? 4 красных очка

hun

„Nézd csak Mike, kivágtam egy papírcsíkot, aminek AB=11 cm hosszú és 1 cm széles.

688

A C, Dés E pontot úgy jelöltem be, hogy csaknem minden szakaszhossz 1, 2, 3, …, 10 és 11 cm kettőn ezekből a pontokból létrejöhet, csak egy szakasz hiányzik.” Mike csodálkozva nézte a papírcsíkot. Gondolkodott egy darabig, aztán mutatott Lisának egy másik 11 cm hosszú csíkot, aminek hasonló felosztása volt. A legrövidebb, 1 cm-es szakasz azonban nem a csík szélére esett.
Hogyan nézhetett ki Mike szalagja? 3 kék pont
Bernd talált még egy AB=17 hosszú szalagot is. Ezen 4 – C,D, E és F – pontot így osztott el, hogy csaknem minden szakaszt 1-től 17 cm-ig le tudott képezni, maximum 3 szakaszhossz hiányzott. Hogy nézett ki ez? 4 piros pont

frz

"Regardes Mike. J'ai découpé une bande de papier - AB = 11 cm de long et 1 cm de large.

688

J'ai marqué les points C, D et E de manière à ce que chaque longueur de 1, 2, 3, ..., 10 et 11 cm puisse être créée à travers deux de ces points - il ne manque qu'une seule longueur .. » , dit Lisa. Mike a regardé la bande et a été étonné. Il a réfléchi un moment, puis il a pu montrer à Lisa une autre longueur de 11 cm de long, qui avait également une telle classification. La distance la plus courte de 1 cm n'était pas sur le bord de la bande.

A quoi aurait pu ressembler la longueur de Mike ? 3 points bleus

Bernd a même trouvé une longueur AB = 17 cm de long. Là, il y avait 4 points - C, D, E et F - répartis de manière que presque tous les tronçons de 1 à 17 cm puissent être formés. A quoi ressemblait-il? 4 points rouges

esp

"Mira Mike. He recortado una tira de papel, AB=11 cm de largo y 1 cm de ancho.

688

He marcado los puntos C, D y E para que casi cualquier longitud de tramo de 1, 2, 3, ..., 10 y 11 cm pueda ser creado por dos de estos puntos – solamente una longitud falta", dijo Lisa. Mike miró la tira y se quedó bastante sorprendido. Lo pensó durante un rato y luego pudo mostrarle a Lisa otra tira de 11 cm que también tenía esa división. Pero el tramo más corto de 1 cm no estaba en el borde de la tira.
¿Cómo podría haber sido la raya de Mike? 3 puntos azules
Bernd incluso encontró una tira de AB=17 cm de longitud. Había distribuido allí 4 puntos (C, D, E y F) para que se pudieran formar casi todas las distancias de 1 a 17 cm – pueden faltar 3 como máximo. ¿Qué aspecto tenía? 4 puntos rojos

en

“Look Mike. I did cut out a paper strip – AB=11 cm long and 1 cm wide.

688

I marked the points C, D and E that way, that nearly every line length from 1, 2, 3, …, 10 and 11 cm can be created through two of those points – only one line length is missing.”, Lisa said. Mike looked at the paper strip and was astonished. He thought for a while, than he was able to show Lisa another 11 cm long paper strip, which had the same scale too. The shortest line of 1 cm wasn't located at the edge of the paper strip.
How could the paper strip of Mike have looked like? 3 blue points
Bernd even found another paper strip of the length AB=17 cm. He allocated 4 points - C, D, E and F – that way, that nearly every line from 1 to 17 cm could be created – a maximum of three line lengths can be missing. How did it probably look like? 4 red points

it

“Guarda, Mike. Ho ritagliato una striscia di carta – AB = 11 cm e di una larghezza di 1 cm. Ho marcato i punti C, D e E nel modo che si trova quasi ogni misura 1, 2, 3, … , 10, 11 come tragitto entro due dei punti A, B, C, D, E. Manca solo una”, diceva Lisa.

688

Mike esaminava la striscia ed era del tutto stupefatto. Rifletteva per un certo tratto di tempo, poi poteva presentare un’altra striscia di carta, anche essa con una lunghezza di 11 cm. Il tragitto di 1 cm non si trovava però al bordo della striscia.
Come potrebbe apparire la striscia di Mike? 3 punti blu
Bernd trovava addirittura una striscia di una lunghezza AB = 17 cm. Aveva distribuito 4 punti C, D, E, F nel modo che si potevano trovare quasi tutti i tragitti entro 1 e 17 cm – possono mancare al massimo tre tragitti. Come appariva quella? 4 punti rossi

Lösung/solution/soluzione/résultat/Решение:

 Musterlösung von Paulchen Hunter, danke. --> pdf <--

 


Aufgabe 5

689. Wertungsaufgabe

deu

„Oh, ich sehe schon wieder mal Millimeterpapier vor dir liegen, da sollt ihr bestimmt das Eintragen von Funktionsbildern üben“, sagte Bernd zu seiner Schwester. „Du hast es fast richtig erfasst. Wir haben heute einfache Potenzfunktionen (y=f(x)=x^n) und Exponentialfunktionen (y=g(x)= n^x) verglichen. Es war aber nicht so viel Zeit, so dass nur n=2 bzw. n= 3 untersucht werden konnten.“, erwiderte Maria.
Welche Koordinaten haben die Schnittpunkte der Funktionen f(x) und g(x) für n = 2?
3 blaue Punkte, wenn nur abgelesen, wenn berechnet bis zu 5 blauen Punkten.
Die Koordinaten der Schnittpunkte der Funktionen f(x) und g(x) für beliebige n>1 ( n – natürliche Zahl) sind zu untersuchen. Wie viele Schnittpunkte haben solche Funktionen? Welche der Funktionen haben nur ganzzahlige Koordinaten bei Ihren Schnittpunkten? (3+2) rote Punkte

Termin der Abgabe 28.10.2021. Срок сдачи 28.10.2021. Ultimo termine di scadenza per l´invio è il 28.10.1921. Deadline for solution is the 28th. October 2021. Date limite pour la solution 28.10.2021. Soluciones hasta el 28.10.2021. Beadási határidő 2021.10.28. 截止日期: 2021.10.28 – 请用徳语或英语回答。

chin

第689题

“噢,我又看到你面前放着的方格纸了,你们应该又练习画函数图像了”。贝恩德对他妹妹说道。
“你差不多猜对了!我们今天对比了简单幂函数 (y=f(x)=x^n) 和指数函数 (y=g(x)= n^x)。但是因为没那么多时间,只能检测n=2 或者n=3。”玛丽雅回答道。

在n=2时,函数f(x) 和 函数g(x)交点的坐标是什么? 如果是看出来的,得到3个蓝点; 如果是计算出来的,可以得到5个蓝点。
对于任意n>1(n是自然数)的函数f(x) 和 g(x)交点的坐标是可以检测的 。
那么这些函数有几个交点?哪些函数在它们的交点处只有整数坐标? (3+2)个红点。

截止日期: 2021.10.28 – 请用徳语或英语回答。

rus

«О, я снова вижу миллиметровку, лежащую перед тобой, наверно вы должны упражняться в записи функциональных изображений», сказал Бернд своей сестре. «Ты почти правильно понял. Сегодня мы сравнили простые степенные функции (y = f(x) = xn) и экспоненциальные функции (y = g(x) = nx). Но времени было не так много, поэтому могли обследовать только n = 2 или n = 3 », ответила Мария. Каковы координаты точек пересечения функций f(x) и g(x) при n = 2? 3 синих очка, если только считаны, если рассчитаны до 5 синих очков. Необходимо исследовать координаты точек пересечения функций f(x) и g(x) для любого n > 1 (n - натуральное число). Сколько точек пересечения у таких функций? Какие из функций имеют только целочисленные координаты в точках пересечения? (3 + 2) красных очка

hun

„Már megint milliméterpapírt látok előtted, biztos a függvények rajzolását gyakorlod.” – mondta Bernd a nővérének. „Majdnem igazad van. Ma egyszerű hatványfüggvényeket (y=f(x)=x^n) és exponenciális függvényeket (y=g(x)= n^x) hasonlítottunk össze. De nem volt túl sok idő, így csak n=2 ill. n= 3 –t tudtuk megvizsgálni.” – válaszolta Mária.
Milyen koordinátákban metszik egymást a f(x) és g(x) függvények, ha n = 2. 3 kék pont, ha leolvassa, 5 kék pont, ha kiszámítja.
Az f(x) und g(x) tetszőleges n>1 függvények metszéspontjainak koordinátáit keressük (n természetes szám). Hány metszéspontja van az ilyen függvényeknek? A függvények közül melyiknek vannak csak egészszámú koordinátái a metszéspontokban? (3+2 piros pont)

frz

"Oh, je vois à nouveau du papier millimétré devant toi, vous devriez certainement vous entraîner à saisir des images fonctionnelles", a dit Bernd à sa sœur. « Tu as presque raison. Aujourd'hui, nous avons comparé des fonctions puissances simples (y=f(x)=x^n) et des fonctions exponentielles (y=g(x)=n x). Mais il n'y avait pas beaucoup de temps, donc seulement n = 2 ou n = 3 pouvaient être examinés », a répondu Maria.
Quelles sont les coordonnées des points d'intersection des fonctions f(x) et g(x) pour n = 2. Si uniquement lu, 3points bleus, si calculés jusqu'à 5 points bleus.
Les coordonnées des points d'intersection des fonctions f(x) et g(x) pour tout n > 1 (n - chiffre entier naturel) sont à examiner. Combien d'intersections ont de telles fonctions ? Laquelle des fonctions n'ont que des coordonnées entières à leurs intersections ? (3 + 2) points rouges

esp

"Oh, veo de nuevo papel cuadriculado delante de ti, seguro que debes practicar el dibujo de diagramas de funciones ahí", le dijo Bernd a su hermana. "Casi has acertado. Hoy hemos comparado funciones de potencia simples (y=f(x)=x^n) y funciones exponenciales (y=g(x)= n^x). Pero no había tanto tiempo, así que sólo se pudieron examinar n=2 y n= 3", respondió María.
Cuáles son las coordenadas de las intersecciones de las funciones f(x) y g(x) para n = 2. Se reciben 3 puntos azules si sólo se lee o hasta 5 puntos azules si se calcula.
Hay que examinar las coordenadas de las intersecciones de las funciones f(x) y g(x) para cualquier n>1 (n - número natural). ¿Cuántos puntos de intersección tienen estas funciones? ¿Cuál de las funciones tiene sólo coordenadas enteras en sus intersecciones? 3+2 puntos rojos

en

“Oh, I can see that you already have some coordinate paper in front of you, where you have have to practice inserting function pictures”, Bernd told his sister. “You did get it quite correctly. Today we compared simple power functions (y=f(x)=x^n) with exponential functions (y=g(x)= n^x). Sadly there wasn't enough time, so we could only analyze n=2 resp. n= 3.”, Maria answered.
Which coordinates do the points of intersection of the functions f(x) and g(x) for n = 2 have. 3 blue points, for just reading off, if calculated you can get up to 5 blue points.
The coordinates of the points of intersection of the functions f(x) and g(x) for random n>1 ( n – whole number) have to be analyzed. How many points of intersection do such functions have? Which of the functions do only have integer coordinates at their points of intersection? (3+2) red points

it

„Ah, vedo di nuovo la carta millimetrata davanti a te. Quindi dovete fare esercizi in eseguire dei grafi.”, Bernd diceva a sua sorella. “Ci sei quasi. Abbiamo rapportato funzioni del tipo (y=f(x)=x^n) con quelli del tipo (y=g(x)= n^x). Ma data che ci mancava il tempo, siamo arrivati solo a n = 2 e n = 3.”, Maria replicava.
Quale sono le coordinate dei punti di’intersezione delle funzioni f(x) e g(x) per n = 2 e n = 3? – 3 punti blu, se solo presi del diagramma, se vengono calcolati 5 punti blu.
Adesso si devono esaminare i punti d’intersezione delle funzioni f(x) e g(x) per n>1 (n - numero natural). Quanti punti d’intersezione hanno tale funzioni? Quale di loro hanno solo coordinate intere? (3 + 2 punti rossi)

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Maximillian, danke . --> pdf <--


Aufgabe 6

690. Wertungsaufgabe

deu

690

„Zwei Kreise, die sich schneiden, das sieht nicht gerade spektakulär aus.“, meinte Lisa zu Mike. „Ja und nein“.
AB = 12 cm, die Radien der Kreise betragen 3 bzw. 4 cm.
Wenn die Punkte A, B, C und D auf der X-Achse eines Koordinatensystems (Descartes) mit 01= 1 cm liegen und der Punkt C die Koordinaten (0;0) hat, welche Koordinaten haben dann die Punkte A, D und B? 2 blaue Punkte. Die Berechnung der Koordinaten von E bringt noch mal 3 blaue Punkte.
Die rechnerische Ermittlung der Winkel AEB, CED und DEB wird mit 9 roten Punkten belohnt.

Termin der Abgabe 04.11.2021. Срок сдачи 04.11.2021. Ultimo termine di scadenza per l´invio è il 04.11.1921. Deadline for solution is the 4th. November 2021. Date limite pour la solution 04.11.2021. Soluciones hasta el 04.11.2021. Beadási határidő 2021.11.04. 截止日期: 2021.11.04 – 请用徳语或英语回答

chin

第690题

690

“这两个相交的圆看起来并不特别。” 丽莎对迈克说。
“你说的对,但也不全对。”

AB=12厘米,两个圆的半径分别是3厘米和4厘米。
如果点A、B、C和D都在一个坐标系的X轴上,其中点C的坐标为(0,0),那么点A、D和B的坐标是多少? 2个蓝点。
如果计算出点E的坐标又可以得到3个蓝点。
计算出∠AEB, ∠CED und ∠DEB的度数,可以得到9个红点奖励。

截止日期: 2021.11.04 – 请用徳语或英语回答。

rus

690

«Двe пересекающихся oкружности, это не выглядит впечатляющим», сказала Лиза Майку. "Да и нет".
AB = 12 см, радиусы окружностей 3 см и 4 см соответственно.
Если точки A, B, C и D лежат на оси X системы координат (Декарта) с 01 = 1 см и у точки C координаты (0; 0), то каким координатам соответствуют тогда точки A, D и B? 2 синих очка. Вычисление координат E приносит ещё 3 синих очка.
Вычислительное определение углов ∢AEB, ∢CED и ∢DEB награждается 9 красными очками.

hun

690

„Két egymést metsző kör nem néz ki túl érdekesnek.” . mondta Lisa Mikenak. „Igen is meg nem is.” AB = 12 cm, a körök sugara 3 és 4 cm.
Ha az A,B, C és D pontok a koordináta rendszer X tengelyén 01= 1 cm vannak és a C pont koordinátája (0;0), mik az A, D és B pont koordinátái? 2 kék pont
Az E pont koordinátáinak kiszámítása plusz 3 kék pont. Az AEB, CED és DEB szögek számtani megadása 9 piros pont.

frz

690

Deux cercles qui se croisent, ça n'a pas l'air spectaculaire. », a déclaré Lisa à Mike. "Oui et non".
AB = 12 cm, les rayons des cercles sont respectivement de 3 et 4 cm.
Si les points A, B, C et D se trouvent sur l'axe X d'un système de coordonnées (Descartes) avec 01 = 1 cm et le point C a pour coordonnées (0;0), quelles coordonnées ont les points A, D et B? 2 points bleus. Le calcul des coordonnées de E apporte encore 3 points bleus.
La détermination mathématique des angles AEB, CED et DEB sera récompensée par 9 points rouges.

esp

690

"Dos círculos que se cruzan, eso no parece espectacular", le dijo Lisa a Mike. "Sí y no.”
AB = 12 cm, los radios de los círculos son 3 y 4 cm respectivamente. Si los puntos A, B, C y D se encuentran en el eje X de un sistema de coordenadas (Descartes) con 01= 1 cm y el punto C tiene las coordenadas (0;0), ¿qué coordenadas tienen los puntos A, D y B? 2 puntos azules. El cálculo de las coordenadas de E aporta otros 3 puntos azules.
El cálculo de los ángulos AEB, CED y DEB se premia con 9 puntos rojos.

en

690

“Two circles, which intersect, this doesn't look spectacular.”, Lisa told Mike. “Yes and no”.
AB = 12 cm, the radii of the circles are 3 resp. 4 cm.
If the points A, B, C and D are situated on the x-axis of a coordinate system (Descartes) with 01= 1cm and point C has the coordinates (0;0), which coordinates do the points A, B and C have? 2 blue points.
Calculating the coordinates of E brings you another 3 blue points.
The arithmetical calculation of the angles AEB, CED and DEB is rewarded with 9 red points.

it

690

Due cerchi che si intersecano; non mi sembra essere molto spettacolare.”, Lisa diceva a Mike. “Sì e no.”
AB = 12 cm, I raggi dei cerchi sono 3 rispettivamente 4 cm.
Se I punti A, B, C e D sono situati sulla asse delle ascisse di un sistema cartesiano ed il punto C ha le coordinate (0;0), quale sono le coordinate dei punti A, D e B? 2 punti blu
Il calcolo delle coordinate di E vale altri 3 punti blu.
La calcolazione degli angoli AEB, CED e DEB viene premiato con 9 punti rossi.

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Volker Bertram, danke. --> pdf <--


Aufgabe 7

691. Wertungsaufgabe

deu

Der Opa von Bernd und Maria hatte wieder einmal einen Klassiker mitgebracht.

691

„Schaut, wie schon oft habe ich das berühmte rechtwinklige Dreieck ABC (3x4x5 cm) gezeichnet. Neu ist der Punkt M. Dieser ist der Mittelpunkt der Kathete AB und zugleich der Mittelpunkt des Kreises durch den Punkt C. Man erkennt zwei grüne und vier rote Quadrate.“, sagte der Opa. „Alles klar.“
Wie groß sind Umfang und Flächeninhalt des schraffierten Sechsecks AEFCGH? 4 blaue Punkte
Man sieht ganz schnell, dass die Summe der Flächeninhalte der vier roten Quadrate gleich der Summe der Flächeninhalte der beiden grünen Quadrate ist – Nachweis durch Berechnung: 3 rote Punkte. Gilt diese Flächengleichheit auch, wenn man die Lage des Punktes C (oberhalb von AB) verändert? (Im Allgemeinen bleibt dabei das Dreieck ABC nicht rechtwinklig, der Radius des Kreises ändert sich und folglich auch die Größe der linken roten Quadrate.)
Falls ja, wie zeigt man das, wenn nein, reicht ein Gegenbeispiel – 4 rote Punkte

Termin der Abgabe 11.11.2021. Срок сдачи 11.11.2021. Ultimo termine di scadenza per l´invio è il 11.11.1921. Deadline for solution is the 11th. November 2021. Date limite pour la solution 11.11.2021. Soluciones hasta el 11.11.2021. Beadási határidő 2021.11.11. 截止日期: 2021.11.11 – 请用徳语或英语回答

chin

第691题

贝恩德和玛丽雅的爷爷又带来了经典的题。

691

“看,正如以前经常做的那样,我又画了一个众所周知的直角三角形ABC(边长分别为3,4,5厘米)。不一样的是点M,它既是边AB的中点,
也是过点C的圆的圆心。这样又得到了两个绿色的和四个红色的正方形。”爷爷说道。
“明白。”
那么带条格的六边形AEFCGH的周长和面积是多少? 4个蓝点
人们能很快看出来四个红色正方形的面积之和等于两个绿色正方形的面积之和。请通过计算来证明。 3个红点
如果边AB上方的点C的位置发生改变,那么面积之和相等还适用吗?如果适用,请证明;如果不适用,请举一个反例。4个红点

截止日期: 2021.11.11 – 请用徳语或英语回答

rus

Дед Бернда и Марии снова принёс с собой классическую задачу.

691

«Послушайте, я нарисовал как уже часто в прошлом знаменитый прямоугольный треугольник ABC (3х4х5 см). Точка M новая. Она - центр катета AB и одновременно центр окружности, проходящей через точку C. Вы можете увидеть два зелёных и четыре красных квадрата», сказал дедушка. "Все ясно."
Каковы периметр и площадь заштрихованного шестиугольника AEFCGH? 4 синих очка
Можно очень быстро увидеть, что сумма площадей четырёх красных квадратов равна сумме площадей двух зелёных квадратов - доказательство вычислением: 3 красных очка.
Имеет ли силу это равенство площадей и тогда, если положение точки C (поверх AB) изменить? (При этом в общем случае треугольник ABC не остаётся прямоугольным, радиус окружности меняется и следовательно также величина левых красных квадратов.)
Если да, то как это показать, если нет, то достаточно привести один контрпример - 4 красных очка

hun

Bernd és Mária nagyapja megint egy klasszikust hozott.

691

„Látjátok milyen sokszor rajzoltam már a híres jobbszögű háromszöget (3x4x5 cm). Újdonság most az M pont. Ez az AB befogó középpontja és egyben a C ponton érintő kör középpontja. Láthatunk két zöld és négy piros négyzetet. „ – mondta nagyapa. „Értjük.”
Mekkora a kerülete és a területe a csíkozott AEFCGH hatszögnek? 4 kék pont
Láthatjuk azonnal, hogy a négy piros négyzet felületének összege megegyezik a két zöld négyszögével. Ennek bizonyítása számítással 3 piros pont.
Érvényes ez a területi egyezés akkor is, ha a C pont helyzetét (AB felé) megváltoztatjuk? Amennyiben igen, bizonyítsuk, ha nem, elég egy ellenpélda. 4 piros pont

frz

Le grand-père de Bernd et Maria avait encore une fois apporté un grand classique.

691

« Regardez, comme je l'ai souvent fait auparavant, j'ai dessiné le fameux triangle rectangle ABC (3x4x5 cm). Le point M est nouveau. C'est le centre de la jambe AB et en même temps le centre du cercle passant par le point C. Vous pouvez voir deux carrés verts et quatre rouges », a déclaré le grand-père. "Entendu."
Quel est le périmètre et l'aire de l'hexagone hachuré AEFCGH ? 4 points bleus
On voit très vite que la somme des aires des quatre carrés rouges est égale à la somme des aires des deux carrés verts - preuve par calcul : 3 points rouges. Cette égalité d'aire s'applique-t-elle également si la position du point C (au-dessus de AB) est modifiée ?
Si oui, comment le montrer, sinon, un contre-exemple suffit - 4 points rouges

esp

El abuelo de Bernd y María había traído una vez más un clásico.

691

"Mira, como ya he hecho muchas veces, he dibujado el famoso triángulo rectángulo ABC (3x4x5 cm). La novedad es el punto M. Éste es el centro del cateto AB y al mismo tiempo el centro de la circunferencia que pasa por el punto C. Puedes ver dos cuadros verdes y cuatro rojos", dijo el abuelo. "Muy bien".
¿Cuál es el perímetro y el área del hexágono rayado AEFCGH? 4 puntos azules.
Se puede ver rápidamente que la suma de las áreas de los cuatro cuadrados rojos es igual a la suma de las áreas de los dos cuadrados verdes - la prueba por cálculo produce 3 puntos rojos. ¿Esta igualdad de áreas también se aplica si se cambia la posición del punto C (sobre AB)? Si la respuesta es afirmativa, ¿cómo se demuestra? Si es negativa, basta con un contraejemplo: 4 puntos rojos.

en

Bernd's and Maria's grandpa once again brought another classic with him.

691

“Look, like many times before I drew the famous right-angled triangle ABC (3x4x5 cm). New is point M. It is the centre of side AB and at the same centre of the circle that intersects through point C. You can see two green and four red squares”, grandpa said. “Alright.”
How big are perimeter and area of the hatched hexagon AEFCGH? 4 blue points
You can see very quickly, that the sum of the areas of the four red squares are equal to the sum of the areas of the two green squares – proof through calculation: 3 red points. Do you have the same equality of the areas, if the position of point C (above AB) gets changed?
If yes, how can you show this, if no, one counterexample is enough – 4 red points

it

Il nonno di Bernd e Maria aveva di nuovo portato un classico.

691

“Guardate, ho disegnato il famoso triangolo rettangolare ABD (3x4x5 cm)- Una novità è il punto M. Questo è il centro del cateto AB e contemporaneamente anche il centro del cerchio che passa per il punto C. Si vedono due quadrati verdi e quattro rossi.”, diceva il nonno. “Abbiamo capito.”
Quale sono la circonferenza e l’area del’ esagono AEFCGH tratteggiato ? 4 punti blu
Si vede facilmente, che la somma delle aeree dei quattro quadrati rossi è uguale a questo dei quadrati Verdi. – Prova tramite un calcolo – 3 punti rossi.
Questa equivalenza, vale anche se si cambia la posizione del punto C (sopra AB)? Se sì, come si dimostra quedsto fatto. Se no, basta un esempio che mostra il contrario. – 4 punti rossi

Lösung/solution/soluzione/résultat/Решение:

Musterlösungen von calvin --> pdf <-- und Hans --> pdf <--, danke.


Aufgabe 8

692. Wertungsaufgabe

deu

„Was liest du denn?“, fragte Maria ihren Bruder. „Das ist das Manuskript „Zauberhafte Zahlen“ von James Horath.“ „Den Namen habe ich noch nie gehört.“ „Das glaube ich dir sofort, aber trotzdem kennst du den Mann“, antwortete Bernd mit einem vielsagenden Lächeln auf den Lippen.
Zu den zauberhaften Zahlen gehören die natürlichen Zahlen n (n>9), die durch ihre Quersumme teilbar sind. Beispiele: 12, Quersumme 3, 12 : 3 = 4. 24, Quersumme 6, 24 : 6 = 4. 131052, Quersumme 12, 131052 : 12 = 10921. Die 31 gehört nicht dazu, deren Quersumme ist 4. 4 ist kein Teiler von 31.
131052, 131053, 131054, 131055 und 131056 sind sogar 5 aufeinanderfolgende Zahlen mit der Eigenschaft, dass die Zahl durch ihre Quersumme teilbar ist.
Für drei blaue Punkte sind drei aufeinanderfolgende solcher Zahlen zu finden – eine Lösung reicht.
Für drei rote Punkte sind vier aufeinanderfolgende solcher Zahlen zu finden – eine Lösung reicht.
Anmerkung: Die kleinsten Zahlen bei rot und blau sind dreistellig.

Termin der Abgabe 18.11.2021. Срок сдачи 18.11.2021. Ultimo termine di scadenza per l´invio è il 18.11.1921. Deadline for solution is the 18th. November 2021. Date limite pour la solution 18.11.2021. Soluciones hasta el 18.11.2021. Beadási határidő 2021.11.18. 截止日期: 2021.11.18 – 请用徳语或英语回答

chin

第692题

“你在看什么?”玛丽雅问她哥哥。
“这是詹姆斯·霍拉斯(James Horath)的手稿《魔法数字》。”
“这个名字我还从没听说过。”
“我相信你!但尽管如此,你还是认识这个人的。” 伯恩德回答道,他的唇上带着一抹意味深长的微笑。

数字和能够被整除的自然数 n (n> 9),就是属于这类神奇数字。
例如: 12的数字和是3, 12:3 = 4;
24的数字和是6,24:6 = 4;
131052的数字和是12,131052:12 = 10921。
但是不包括31,31的数字和是4,4不是31的除数。
131052, 131053, 131054, 131055 和 131056 是 5 个连续的数字,具有被数字和整除的特性。

请找出三个连续的这样的数字,得到3个蓝点 – 一个答案就足够了。
找出四个连续的这样的数字,得到3个红点 – 一个答案就足够了。

注意:红色和蓝色中的最小的数字是三位数。

截止日期: 2021.11.18 – 请用徳语或英语回答

rus

«Что ты читаешь?» спросила Мария своего брата. «Это рукопись «Волшебные числа» Джеймса Хората». «Я никогда не слышалa этого имени». «Я сразу верю тебе, но ты всё равно знаешь этого человека», ответил Бернд с многозначительной улыбкой на лице.
Магические числа включают натуральные числа n (n> 9), которые делятся на их сумму цифр числа.
Примеры:
12, сумма цифр числа 3, 12 : 3 = 4.
24, сумма цифр числа 6, 24 : 6 = 4.
131052, сумма цифр числа 12, 131052: 12 = 10921.
31 не включается, сумма цифр числа 4, а 4 не является делителем 31.
131052, 131053, 131054, 131055 и 131056 - это даже пять последовательных чисел с тем свойством, что число делится на его сумму цифр.
Для трёх синих очков нужно найти таких чисел три подряд - достаточно одного решения.
Для трёх красных очков нужно найти таких чисел четыре подряд - достаточно одного решения.
Примечание: Наименьшие числа для красных и синих очков являются трёхзначными.

hun

„Mit olvasol?” – kérdezte Mária a bátyját. „Ez egy jegyzet a „varázslatos számokról” James Horath-tól. „Sose hallottam a nevét.” „Elhiszem, ennek ellenére biztos ismered ezt az embert.” – válaszolta Bernd sejtelmes mosollyal.
A varázslatos számokhoz olyan természetes számok tartoznak, melyek a saját összegükkel oszthatók. Például: 12 összege 3, 3, 12 : 3 =4. 24 összege 6, 24 : 6 = 4. 131052 összege 12, 131052 : 12 = 10921. A 31 nem tartozik ide, összege 4. 31 nem osztható 4-gyel.
131052, 131053, 131054, 131055 és 131056 öt egymást követő szám, melyek oszthatók az összegükkel.
Három kék pontért találjon három ilyen egymást követő számot, egy megoldás elegendő.
Három piros pontért nevezzen meg negy ilyen számot, egy megoldás elég.
Megjegyzés: a legkisebb számok a piros és kék feladatnál három jegyűek.

frz

« Qu'est-ce que tu lis ? » demanda Maria à son frère. " C'est le manuscrit "Nombres magiques" de James Horath." "Je n'ai jamais entendu ce nom." "Je te crois sur parole, mais tu connais cet homme", répondit Bernd avec un sourire sur son visage.
Les nombres magiques comprennent les nombres naturels n (n> 9), qui sont divisibles par leur somme de contrôle. Exemples : 12 somme de contrôle 3, 12 : 3 = 4. 24, somme de contrôle 6, 24 : 6 = 4. 131052 somme de contrôle 12, 131052 : 12 = 10921. 31 n'est pas inclus, la somme de contrôle est 4.4 qui n'est pas un diviseur de 31.
131052, 131053, 131054, 131055 et 131056 sont tout même 5 nombres consécutifs avec la propriété du nombre divisible par sa somme de contrôle.
Pour trois points bleus, il faut trouver trois nombres consécutifs - une solution suffit.
Pour trois points rouges, il faut trouver quatre nombres consécutifs de ce type - une solution suffit.
Remarque : les plus petits nombres pour le rouge et le bleu sont à trois chiffres.

esp

"¿Qué estás leyendo?", le preguntó María a su hermano. "Es el manuscrito 'Números mágicos' de James Horath". "Nunca había oído ese nombre". "Te tomo la palabra, pero, aun así, ya conoces al hombre", respondió Bernd con una significativa sonrisa en los labios.
Los números mágicos incluyen los números naturales n (n>9) que son divisibles por su suma de dígitos. Ejemplos: 12 suma de dígitos 3, 12 : 3 = 4. 24, suma de dígitos 6, 24 : 6 = 4. 131052 suma de dígitos 12, 131052 : 12 = 10921. 31 no pertenece a ellos, su suma de comprobación es 4. 4 no es un divisor de 31.
131052, 131053, 131054, 131055 y 131056 son 5 números consecutivos con la propiedad de que los números son divisibles por sus sumas de dígitos.
Para tres puntos azules, hay que encontrar tres números consecutivos de este tipo - una solución es suficiente.
Para tres puntos rojos, encuentra cuatro números consecutivos de este tipo - una solución es suficiente.
Nota: Los números más pequeños en rojo y azul tienen tres dígitos.

en

“What are you reading there?“”, Maria asked her brother. “That's the manuscript „Magical numbers“ by James Horath.” “I haven't heard that name yet.” “I believe you straight away, but you still know this man.”, Bernd answered with a meaningful expression on his face.
The magical numbers include the whole numbers n (n>9), which can be divided by their digit sum. Example: 12 digit sum 3, 12 : 3 =4. 24, digit sum 6, 24 : 6 = 4. 131052 digit sum 12, 131052 : 12 = 10921. 31 doesn't fit in, its digit sum is 4. 4 isn't a factor of 31.
131052, 131053, 131054, 131055 and 131056 are even 5 consecutive numbers with the feature, that the number can be divided by its digit sum.
For three blue points you have to find three such consecutive numbers – one solution is enough.
For three red points you have to find four such consecutive numbers – one solution is enough.
Footnote: The smallest numbers for red and blue do have three digits.

it

„Cosa stai leggendo?“, Maria chiedeva a suo fratello. „È il libro ‘Numeri incantevoli’ di James Horath.”
„Mai sentito questo nome.” „Ci credo, ma ugualmente conosci quest’uomo”, Bernd replicava con un sorriso parlante sulle labbra.
Ai numeri incantevoli appartengono I numeri naturali n (n>9), che sono divisibili della loro somma delle cifre. Esempi: 12 somma delle cifre 3, 12:3=4. 24, somma delle cifre 6, 24:6=4. 131052 somma delle cifre 12, 131052:12=10921. IL numero 31 invece non f aparte di questi numeri; la loro somma delle cifre è 4. 4 non divide 31.
131052, 131053, 131054, 131055 è 131056 sono addirittura 5 numeri consecutivi con questa caratteristica.
Per tre punti blu sono da trovare tre tale numeri consecutivi – basta un’ esempio.
Per tre punti rossi sono da trovare quattro tale numeri consecutivi – basta un’esempio
Nota bene: I numeri che si devono trovare hanno almeno tre cifre.

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Gerhard Palme, vielen Dank. --> pdf <--


Aufgabe 9

693. Wertungsaufgabe

deu

„In dem Manuskript „Zauberhafte Zahlen“ habe ich etwas richtig Falsches entdeckt.“, sagte Maria, nachdem ihr Bruder seiner Schwester den Lesestoff weitergereicht hatte. „Ja, du hast richtig gehört, da wird es falsch gemacht, aber das Ergebnis ist dann doch richtig“.
Das Vertauschen und falsche Kürzen.
182/819 = 218/891 hier sind also Ziffern vertauscht, aber der Bruch bleibt. Streichst du nun im Zähler und Nenner die gleichen Ziffern (falsches Kürzen) so bleibt das Ergebnis doch richtig.182/819    =  218/981 = 2/9
3 blaue Punkte gibt es, wenn man einen weiteren Bruch x findet, dessen Zähler und Nenner jeweils dreistellig sind. Die Ziffern in Zähler und Nenner lassen sich vertauschen und auch nach dem falschen Kürzen darf sich der Wert des Bruches (4/7) nicht ändern. Sollte die Aufgabenstellung mehrere Lösungen haben, so reicht die Angabe eines Beispiels.
Falsches Kürzen geht auch für (a³ + b³)/(a³ + c³) = (a+b)/(a+c)
Beispiel: (40³ + 25³)/(40³ + 15³) = (40 + 25)/(40 + 15)
Zu zeigen ist, dass man a und b frei wählen kann und man nur bei der Wahl von c etwas beachten muss, damit (a³ + b³)/(a³ + c³) = (a+b)/(a+c) gilt. 3 rote Punkte

Termin der Abgabe 25.11.2021. Срок сдачи 25.11.2021. Ultimo termine di scadenza per l´invio è il 25.11.1921. Deadline for solution is the 25th. November 2021. Date limite pour la solution 25.11.2021. Soluciones hasta el 25.11.2021. Beadási határidő 2021.11.25. 截止日期: 2021.11.25 – 请用徳语或英语回答

chin

第693题

“在《魔法数字》手稿中我发现了一些不对的地方,” 玛丽雅在她哥哥把阅读材料传给她妹妹之后说道。“是的,你没听错,在这儿它们被做错了,但结果却是对的”。

交换与错误的缩小。
182/819 = 218/981, 这里的数字被交换了,但分数仍然和之前一样。
去掉分子和分母中相同的数字(错误的缩小),结果保持不变。
182/819 = 218/981  = 2/9

如果你能找到另外一个分子和分母都是三位数的这样的一个分数 x,把分子和分母中的数字交换并错误的缩小之后,分数值(4/7)仍然保持不变,你会得到3个蓝点。
如果有很多答案,给出一个例子就可以了。

错误的缩小也适用于 (a³ + b³) / (a³ + c³) = (a + b) / (a + c)形式。
例如:(40³ + 2

 

5³) / (40³ + 15³) = (40 + 25) / (40 + 15)
请举出一个例子,a和b可以自由选择,人们只有选择c时需要注意,要满足(a³+b³)/(a³+c³)=(a+b)/(a+c)这个式子成立。3个红点

截止日期:2021.11.25 - 请用德语或英语回答

rus

«Я обнаружила что-то действительно неправильное в рукописи «Волшебные числа», сказала Мария после того, как свой брат передал материалы для чтения своей сестре.
«Да, ты не ослышался, там кое-что будет сделано неправильно, но результат всё-таки правильный».
Перестановка и неправильное сокращение.
182/819 = 218/891 здесь цифры меняются местами, но дробь остаётся. Если вы удалите одинаковые цифры в числителе и знаменателе (неправильное сокращение), результат дроби всё равно будет правильным. 182/819 = 218/981  = 2/9
Если ты найдёшь другую дробь x, числитель и знаменатель которой являются трёхзначными, получишь 3 синих очка. Цифры в числителе и знаменателе можно менять местами, и значение дроби (4/7) не должно изменяться даже после неправильного сокращения. Если у задачи есть несколько решений, достаточно привести один пример.
Неправильное сокращение также работает для (a³ + b³) / (a³ + c³) = (a + b) / (a + c)
Пример: (40³ + 25³) / (40³ + 15³) = (40 + 25) / (40 + 15)
Необходимо показать, что можно свободно выбирать a и b, и нужно только что-то учитывать при выборе c, чтобы выполнялось (a³ + b³) / (a³ + c³) = (a + b) / (a + c) . 3 красных очка

hun

„A Varázslatos számok című kéziratban valami nagyon helytelent fedeztem fel.” – mondta Mária, miután a bátyja a húgának az olvasmányt továbbította. „Igen, jól hallottad, rosszul csinálták, de a végeredmény mégis helyes lett.”
A felcserélés és rossz rövidítés.
182/819 = 218/981 itt tehát a számokat felcserélték, de az osztás maradt. Lehúzod a számlálóban és a nevezőben az ugyanolyan számokat (hamis rövidítés) az eredmény mégis helyes marad. 182/819 = 218/981 = 2/9
3 kék pont, ha olyan további törtet talál, aminek a számlálója és nevezője három számjegyű, a számokat fel lehet cserélni és hamis rövidítés után a tört értéke nem változik. Amennyiben a feladatnak több megoldása van, elegendő egy példa megadása.
A hamis rövidítés mehet pl. így is: (a^3 + b^3)/(a^3 + c^3) = (a+b)/(a+c)
Példa: (40^3 + 25^3)/(40^3 + 15^3) = (40 + 25)/(40 + 15)
Mutassa meg, hogy ha a és b szabadon választott és csak a c kiválasztásánál kell valamire figyelni, hogy (a^3 + b^3)/(a^3 + c^3) = (a+b)/(a+c) érvényes legyen, 3 piros pontot ér.

frz

« J’ai découvert quelque chose de vraiment faux dans le manuscrit « Nombres magiques »», a déclaré Maria après que son frère ait transmis le matériel de lecture à sa sœur. "Oui, tu as bien entendu, c'est mal fait, mais le résultat est correct quand même".
Mélange et abréviation incorrecte.
182/819 = 218/981 ici les chiffres sont échangés, mais la fraction reste. Si tu supprimes les mêmes chiffres au numérateur et au dénominateur (abréviation incorrecte), le résultat sera toujours correct. 182/819 = 1 8 2/8 1 9  = 2/9
Il y a 3 points bleus si on trouve une autre fraction x dont le numérateur et le dénominateur sont chacun à trois chiffres. Les chiffres du numérateur et du dénominateur peuvent être intervertis et la valeur de la fraction (4/7) ne doit pas changer même après une mauvaise abréviation. Si l'exercice a plusieurs solutions, il suffit de donner un exemple.
Une abréviation incorrecte fonctionne également pour (a³ + b³) / (a³ + c³) = (a + b) / (a ​​+ c)
Exemple : (40³ + 25³) / (40³ + 15³) = (40 + 25) / (40 + 15)
Il faut montrer que l'on peut choisir librement a et b et qu'il suffit de prendre en compte quelque chose lors du choix de c, de sorte que (a³ + b³) / (a³ + c³) = (a + b) / (a ​​+ c) est vrai. 3 points rouges

esp
"Encontré algo realmente malo en el manuscrito "Números mágicos"", dijo María después de que su hermana le pasara la lectura. "Sí, has oído bien, allí se hace mal, pero luego el resultado es correcto".
El intercambio y el acortamiento equivocado.
182/819 = 218/981 aquí, los dígitos se han intercambiado, pero la fracción se mantiene. Si ahora se tachan los mismos dígitos en el numerador y el denominador (acortamiento erróneo), el resultado sigue siendo correcto.182/819 = 218/891 = 2 1 8/ 9 8 1 = 2/9
Obtienes 3 puntos azules si encuentras otra fracción x cuyo numerador y denominador tengan tres dígitos cada uno. Los dígitos del numerador y del denominador pueden intercambiarse e incluso después del acortamiento erróneo, el valor de la fracción (4/7) no debe cambiar. Si el problema tiene varias soluciones, basta con dar un ejemplo.
El acortamiento incorrecto también funciona para (a3 + b3)/(a3 + c3) = (a+b)/(a+c).
Ejemplo: (403 + 253)/(403 + 153) = (40 + 25)/(40 + 15)
Demuestre que puede elegir a y b libremente y que sólo tiene que considerar algo al elegir c, de modo que (a3+ b3)/(a3 + c3)= (a+b)/(a+c) es válido. 3 puntos rojos

en

“Inside the manuscript 'Magical Numbers' I discovered something wrong”, Maria said, after her brother gave the reading material to his sister. “Yes you did listen right, it's done wrong, but the result is still correct.”
Interchange and wrong reduction of the fraction.
182/819 = 218/981 so here digits were switched, but the fraction still remains. If you delete the same digits in numerator and denominator (wrong reduction of the fraction), the result will still be correct. 182/819 = 1 8 2/8 1 9  = 2/9
3 blue points you will get, if you find another fraction x, of which nominator and denominator are each three-digit. The digits in nominator and denominator can be switched and even after the wrong reduction of the fraction the value of the fraction (4/7) mustn't change. If there are more then one solution, giving one example is enough.
Wrong reduction of the fraction is possible for (a³ + b³)/(a³ + c³) = (a+b)/(a+c) too.
Example: (40³ + 25³)/(40³ + 15³) = (40 + 25)/(40 + 15)
You have to show, that you can choose a and b freely and you only have to consider the correct choice of c, that (a³ + b³)/(a³ + c³) = (a+b)/(a+c) applies. 3 red points

it

„Nel libro ‘numeri incantevoli’ ho trovato un vero lapsus.”, Maria diceva dopo aver ricevuto il testo da suo fratello. „Hai sentito bene; il calcolo è sbagliato, eppure il risultato è corretto.”
Lo scambio di cifre e la semplificazione falsa di frazioni:
182/819 = 218/981; quindi le cifre sono scambiate, ma la frazione rimane (ma non ha però più lo stesso valore – quindi il segno di uguale è sbagliato). Se invece venono cancellati le stesse cifre nel numeratore e nel denominatore (semplificazione falsa), il risultato è corretto.
182/819 = 218/981 = 2/9
3 punti blu vengono dati, se si trova un’altra frazione x, del quale numeratore e denominatore abbiano tre cifre ognuno. Le cifre possono essere scambiate ed anche dopo la semplificazione falsa, il valore della frazione (4/7) non si deve cambiare. Nel caso che siano alcune soluzioni possibili, ne basta uno.
Una semplificazione falsa funziona anche nel caso (a3+b3)/(a3+c3) = (a+b)/(a+c).
Per esempio: (403+253)/(403+153) = (40+25)/(40+15).
Per 3 punti rossi è da dimostrare, che a e b possano essere scelte liberamente, mentre per scegliere c bisogna stare attento a qualcosa per assicurare che valga (a3+b3)/(a3+c3) = (a+b)/(a+c).

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Hans, danke. --> pdf <--


Aufgabe 10

694. Wertungsaufgabe

deu

„Na kommt, einen oder zwei „Zahlenzauber“ vertragen wir noch“, meinte Mike. „Okay!“

694

Nun ja, immer gilt das mit der Gleichheit von gemischtem Bruch und dem Produkt nicht, dazu die Vieren des Beispiels einfach durch 2 Sieben ersetzen.
Wenn eine natürliche Zahl a (a>0) gewählt wird, wie muss dann das b gewählt werden, so dass die allgemeine Gleichung stimmt? 3 blaue Punkte.
Aus der Welt der Logarithmen. Für den natürlichen Logarithmus gilt ln((81/8) - 9) = ln (81/8) – ln 9
Allgemein: ln((a/b) - c) = ln (a/b) – ln c. Das gilt allerdings nicht immer, aber wenn ich c > 1 vorgebe, wie müssten dann a und b gewählt (berechnet) werden, damit die Gleichung stimmt? 3 rote Punkte.

Termin der Abgabe 02.12.2021. Срок сдачи 02.12.2021. Ultimo termine di scadenza per l´invio è il 02.12.1921. Deadline for solution is the 2th. December 2021. Date limite pour la solution 02.12.2021. Soluciones hasta el 02.12.2021. Beadási határidő 2021.12.02. 截止日期: 2021.12.02 – 请用徳语或英语回答

chin

第694题

“过来看,我们还可以操纵一、两个数字魔法。”迈克说。
“好的!”
等式 694 1,基本方程式形式是:694 2
当然这个混合分数等式不是一直成立。例如把例题中等式两边的4换成7,这个等式就不成立了。
如果已经选择了一个自然数a (a>0),为了使上述方程式成立,那么人们怎么选择b呢? 3个蓝点。

来自于对数的世界。
对于一个自然对数,等式 ln((81/8)- 9) = ln(81/8)–ln 9,基本方程式形式是:ln((a/b)- c) = ln(a/b)–ln c。
这个方程式也不是一直成立的。但是如果我指定 c > 1,为了使这个方程成立,那么a和b应该如何选择? 3个红点。

截止日期至2021年12月2号

rus

«Давай, мы все ещё выдержим один или два «фокуса из мира чисел»», сказал Майк.
«OK!, 694 1 в общем 694 2 .
Мм да, это равенство смешанной дроби и произведения не всегда имеет место , просто замените четвёрки в примере двумя семёрками.» Если выбрано натуральное число a (a > 0), как нужно выбрать b, чтобы общее уравнение было правильным? 3 синих очка. Из мира логарифмов: Для натурального логарифма имеет место ln ((81/8) - 9) = ln (81/8) - ln 9. В общем: ln ((a / b) - c) = ln (a / b) - ln c. Это не всегда верно, но если я задам c > 1, как должны быть выбраны (рассчитаны) a и b, чтобы уравнение было правильным? 3 красных очка.

hun

„Na gyere, egy vagy két varázsszámot tudok még mutatni.” – mondta Mike. „Jó.”

694

Hát igen, nem mindig érvényes az egyenlőség a vegyes törteket és eredményt illetően, ehhez a példa négyeseiben egyszerűen kettővel a hetest pótoljuk.
Amennyiben egy (a>0) természetes számot választunk, hogyan kell kiválasztani a b számot, hogy az általános egyenlőség meglegyen? 3 kék pont
A logaritmus világából. A természetes logaritmusra igaz ln((81/8) - 9) = ln (81/8) – ln 9.
Általánosságban: ln((a/b) - c) = ln (a/b) – ln c. azonban ez nem mindig érvényes. Ha c > 1 –t megadom, akkor mekkora legyen a és b (kiszámítva), hogy az egyenőség fennálljon? 3 piros pont

frz

"Allez, nous pouvons toujours entendre un ou deux " nombre magiques", a déclaré Mike. "D'accord!"

 694 1 généralement 694 2

Eh bien, l'égalité de la fraction mixte et du produit ne s'applique pas toujours, remplacer simplement les chiffres quatre dans l'exemple par deux chiffres sept.
Si un nombre naturel a (a> 0) est choisi, comment doit-on choisir b pour que l'équation générale soit correcte ? 3 points bleus.
Du monde des logarithmes. Le logarithme népérien est ln ((81/8) - 9) = ln (81/8) - ln 9
Généralement : ln ((a / b) - c) = ln (a / b) - ln c. Ce n'est pas toujours vrai, mais si je spécifie c>1, comment a et b devraient-ils être sélectionnés (calculés) pour que l'équation soit correcte ? 3 points rouges.

esp

"Vamos, todavía podemos soportar un "hechizo de número" o dos", dijo Mike. "¡Está bien!"
694 1 general 694 2

Pues bien, la igualdad de la fracción mixta y el producto no siempre se aplica, así que basta con sustituir los 4 del ejemplo por dos 7.
Si se elige un número natural a (a>0), ¿cómo se debe elegir b para que la ecuación general sea correcta? 3 puntos azules.
Del mundo de los logaritmos.
Para el logaritmo natural, ln((81/8) - 9))= ln (81/8) - ln 9
En general: ln (a/b) - c) = ln (a/b) - ln c.
Sin embargo, esto no siempre es cierto, pero si especifico c > 1, ¿cómo habría que elegir (calcular) a y b para que la ecuación sea correcta? 3 puntos rojos.

en

“Come on one or two more so called 'number tricks' will be alright”, Mike. said “Okay!”

694

Well, we always do have the equality of mixed fractions and not the product, therefore you substitute the fours through 2 sevens in the example.
If a whole number a (a>0) gets chosen, how has b to be chosen, so that the general equation is true? 3 blue points.
From the world of logarithms. For the whole logarithm ln((81/8) - 9) = ln (81/8) – ln 9 is true.
In general: ln((a/b) - c) = ln (a/b) – ln c. This is not true, if I prescribe c > 1, how have a and b then to be chosen (calculated), that the equation is true? 3 red points.

it

„Dai, qualche aspetto magico rispetto numeri dovremmo ancora esaminare”, diceva Mike. „Va bene!”

 694 1 o in genere 694 2

Naturalmente non funziona sempre che la frazione mista sia uguale al prodotto. Per capirlo, basta cambiare nell’esempio le „4” con due „7”.
Se viene scelto un numero naturale a, come deve essere scelto b per ricevere un’equazione generale corretta? 3 punti blu
Parliamo adesso di logaritmi. Per il logaritmo naturale vale: ln((81/8) - 9) = ln(81/8) – ln(9)
In genere: ln((a/b) – c) = ln(a/b) – ln(c) però non in ogni caso. Se viene dato un c>1, come devono essere scelte (clcolate) a e b per un’equazione corretta? 3 punit rossi

Lösung/solution/soluzione/résultat/Решение:

Die blaue Aufgabe ist sehr einfach gewesen, die Lösung von rot "scheiterte" für viele halt daran, dass die notwendigen Gesetzmäßigkeiten fast nie im Unterricht vorkommen, schade eigentlich.
Musterlösung von Reinhold M., danke:
der Term a a/b, b ≠ 0, bei "blau" bedeutet ja
   a a/b = a + a/b = a * (b + 1)/b,
so dass die Bedingung genau für (Multiplikation mit b/a)
   b + 1 = a
erfüllt ist.
Es muss also b = a - 1 gewählt werden.
Im Beispiel gilt das ja tatsächlich: a = 5, b = 4 = 5 - 1 = a - 1.

Die rechte Seite der "roten" Bedingungsgleichung (b ≠ 0) kann man ja zu
   ln(a/b) - ln(c) = ln((a/b) / c)
umformen, so dass die Bedingung genau für
   a/b - c = (a/b) / c
erfüllt ist, was wiederum genau für (Addition von c - (a/b) / c)
   a/b * (1 - 1/c) = c
gilt - und das genau für (Multiplikation von c / (c - 1))
   a/b = c^2 / (c - 1).
Es muss also a/b = c^2 / (c - 1) gelten. Beispielsweise können b ≠ 0
frei und dann a = b * c^2 / (c - 1) gewählt werden.
Sollen alles natürliche Zahlen sein, so gibt es wegen der
Teilerfremdheit von c^2 und c - 1 eine ganze Zahl n, n > 0, so dass
   a = c^2 n,
   b = (c - 1) n.
Sollen zusätzlich a und b teilerfremd sein, so folgt n = 1, also a =
c^2, b = c - 1.
Im Beispiel gilt das ja tatsächlich: c = 9, a = c^2 = 81, b = c - 1 = 8.


Aufgabe 11

695. Wertungsaufgabe

deu

„Einen ziemlich großen Kreis hast du gezeichnet.“, sagte Bernd zu seiner Schwester. „Das finde ich nicht, der Radius beträgt 6 cm.

695

Ich habe noch ein gleichschenkliges Trapez eingezeichnet. Die zueinander parallelen Seiten des Trapezes sind 10 cm bzw. 6 cm lang.“
Wie groß sind Umfang und Flächeninhalt des Trapezes? - 4 rote Punkte.
Wie groß sind Umfang und Flächeninhalt eines größtmöglichen gleichseitigen Dreiecks, welches in diesen Kreis passt.? - 4 blaue Punkte.

Termin der Abgabe 09.12.2021. Срок сдачи 09.12.2021. Ultimo termine di scadenza per l´invio è il 09.12.1921. Deadline for solution is the 9th. December 2021. Date limite pour la solution 09.12.2021. Soluciones hasta el 09.12.2021. Beadási határidő 2021.12.09. 截止日期: 2021.12.09 – 请用徳语或英语回答

chin

第695题
“你画了一个相当大的圆啊!”伯恩德对他妹妹说。

695


“我不觉得,这个圆的半径是 6 厘米。 我还画了一个等腰梯形。 梯形的两个平行边的边长分别是10厘米和6厘米。”

那么梯形的周长和面积是多大? - 4个红点。
在这个圆内的最大的等边三角形的周长和面积是多少? - 4个蓝点。

截止日期: 2021.12.09 – 请用徳语或英语回答

russ

«Ты нарисовала довольно большой круг», сказал Бернд своей сестре. «Не думаю, радиус всего 6 см.

695

Я также нарисовала равнобочную трапецию. Длина параллельных сторон трапеции – 10 см и 6 см ".
Насколько велики периметр и площадь трапеции? - 4 красных очка.
Насколько велики периметр и площадь максимально возможного равностороннего треугольника, который вписывается в этот круг? - 4 синих очка.

hun

„Jó nagy kört szerkesztettél.” – mondta Bernd a húgának. „Nem is, a sugara 6 cm.

695

Bele rajzoltam egy egyenlő szárú trapézt. A párhuzamos oldalak 1ö és 6 cm hosszúak.”
Mekkora a kerülete és a területe a trapéznak. – 4 piros pont
Mekkora a kerülete és felülete a lehető legnagyobb egyenlő oldalú háromszögnek, ami a körbe belefér? – 4 kék pont

frz

« T'as tracé un assez grand cercle », dit Bernd à sa sœur. « Je ne pense pas, le rayon est de 6 cm.

695

J'ai dessiné un trapèze isocèle. Les côtés parallèles du trapèze mesurent 10 cm et 6 cm de long."
Quelle est la circonférence et la surface du trapèze ? - 4 points rouges.
Quelle est la circonférence et la surface du plus grand triangle équilatéral possible rentrant dans ce cercle ? - 4 points bleus.

esp

"Has dibujado un círculo muy grande", dijo Bernd a su hermana. "No lo creo, el radio es de 6 cm.

695

También dibujé un trapecio isósceles. Los lados del trapecio que son paralelos entre sí miden 10 cm y 6 cm respectivamente." ¿Cuáles son el perímetro y el área del trapecio? - 4 puntos rojos.
¿Cuál es el perímetro y el área del mayor triángulo equilátero posible que cabe dentro de este círculo? - 4 puntos azules.

en

“You've drawn quite big circle.”, Bernd told his sister “I can't agree with you on that, the radius is 6 cm.

695

I've also drawn an isosceles trapezium inside. The parallel sides of the trapezium facing each other are 10 cm resp. 6 cm long.”
How big are perimeter and area of the trapezium? - 4 red points.
How big are perimeter and area of the biggest possible equilateral triangle, fitting inside the circle.? - 4 blue points.

it

„Hai disegnato un cerchio abbastanza grande.”, Bernd diceva a sua sorella. „Non mi sembra; il raggio è 6 cm.

695

Poi ho disegnato un trapezio isosceles. I lati paralleli hanno una lunghezza di 10 e 6 cm.”
Quale sono l’area e la circonferenza del trapezio? 4 punti rossi
Quale sono l’area e la circonferenza del triangolo equilatero più grande possible che entra in questo cerchio? 4 punti blu

Lösung/solution/soluzione/résultat/Решение:

Agesehen davon, dass die Farben (blau und rot) verwechselt wurden, war die Lösung recht einfach zu finden.
Musterlösung von Hans, danke. --> pdf <--


Aufgabe 12

696. Wertungsaufgabe

deu

696 Dürerbuchstabe G

696 g

„Schaut, ich habe den Buchstaben G konstruiert. Damit sind alle Buchstaben für das deutsche Wort W O C H E N A U F G A B E vorhanden“, sagte Lisa ganz stolz. (Aufgaben 600, 612, 624, 636, 648, 660, 672, 684 und 696)
Die Basis der Konstruktion ist das Quadrat ABCD mit der Seitenlänge a. (Für die Aufgabe wurde a = 10 cm gewählt.) Wie der Buchstabe konstruiert wird, lässt sich dem zweiten Bild entnehmen.

696

Die großen Kreise (Mittelpunkte M1 und M2) haben den Radius a/2. Die mittelgroßen Kreise haben den Radius a/10 und für die kleinsten Kreise gilt r =a/30.
Wie groß sind Flächeninhalt und Umfang des Kreisabschnitts, der rechts über das Quadrat ABCD hinausragt? - 6 blaue Punkte.
Wie groß sind Umfang und Flächeninhalt der roten Teilfigur RTFU? 8 rote Punkte.

Termin der Abgabe 16.12.2021. Срок сдачи 16.12.2021. Ultimo termine di scadenza per l´invio è il 16.12.1921. Deadline for solution is the 16th. December 2021. Date limite pour la solution 16.12.2021. Soluciones hasta el 16.12.2021. Beadási határidő 2021.12.16. 截止日期: 2021.12.16 – 请用徳语或英语回答

chin

第696题 丢勒字母 G

“看,我构建了字母 G。 这样德语单词 W O C H E N A U F G A B E 中的所有字母都有了。” 丽莎非常自豪地说。
(参考练习题 600、612、624、636、648、660、672、684 和 696)

696 g


构图的基础是边长为a的正方形ABCD,(这道题可以选a=10厘米)。这个字母是怎么构建的,可以参考第二张图。

圆心分别是M1和M2的大圆的半径为a/2; 中等圆的半径是a/10; 最小圆的半径是a/30。

696

请问:超出正方形ABCD右边的弧形部分的面积和周长是多少? 6个蓝点
红色部分RTFU的周长和面积是多少?8个红点

截止日期: 2021.12.16 – 请用徳语或英语回答

rus

Буква Дюрера G

«Смотрите, я построила букву G. Это означает, что все буквы немецкого слова W O C H E N A U F G A B E присутствуют, гордо сказала Лиза. (Задачи 600, 612, 624, 636, 648, 660, 672, 684 и 696)

696 g

Основа конструкции - квадрат ABCD с длиной стороны a. (Для задачи было выбрано а = 10 см.) Как построена буква, можно увидеть на втором рисунке.

696

Большие круги (центры M1 и M2) имеют радиус a/2. Круги среднего размера имеют радиус a/10, а самые маленькие круги имеют радиус r = a/30.
Каковы площадь и периметр сегмента круга, который выступает на правой стороне за квадрат ABCD? - 6 синих очков.
Каковы периметр и площадь красной части рисунка RTFU? 8 красных очков.

hun

Dürer betű „G”

„Nézd, megszerkesztettem a G betűt. Ezzel a német szónak, a WOCHENAUFGABE-nak minden betűje megvan.” mondta büszkén Lisa. (600, 612, 624, 636, 648, 660, 672, 684 és 696-os feladat)

696 g

A szerkesztés alapja az a élhosszúságú ABCD négyszög. (A feladatban a = 10 cm.) A további szerkesztés a második képen követhető.

696

A nagy körök (középpontja M1 és M2) sugara a/2. A közepes köröké a/10, a legkisebbeké a/30.
Mekkora a felülete és kerülete a körszeletnek, ami jobbra az ABCD négyszögből kilóg? – 6 kék pont
Mekkora a felülete és kerülete a piros RTFU részletnek? – 8 piros pont

frz

Lettre G Dürer

 « Regardez, j'ai construit la lettre G. Cela signifie que toutes les lettres du mot allemand W O C H E N A U F G A B E sont là », a déclaré fièrement Lisa. (Exercices 600, 612, 624, 636, 648, 660, 672, 684 et 696)

696 g

La base de la construction est le carré ABCD avec la longueur d'arête a. (A = 10 cm a été choisi pour cette exercice.) La façon dont la lettre est construite peut être vue dans la deuxième image.

696

Les grands cercles (centres M1 et M2) ont le rayon a/2. Les cercles de taille moyenne ont le rayon a/10 et les plus petits cercles ont r =  a/30.
Quelle est la superficie et le périmètre du segment de cercle qui dépasse vers la droite au-delà du carré ABCD ? - 6 points bleus.
Quelle est la taille de la circonférence et de l'aire de la partie rouge de la figure RTFU ? 8 points rouges.

esp

Letra G de Durero

"Mira, he construido la letra G. Así que todas las letras de la palabra alemana W O C H E N A U F G A B E están ahí", dijo Lisa con bastante orgullo. (Tareas 600, 612, 624, 636, 648, 660, 672, 684 y 696)

696 g

La base de la construcción es el cuadrado ABCD con la longitud de arista a. (Para la tarea, se eligió a = 10 cm.) En la segunda imagen se puede ver cómo se construye la letra.

696

Los círculos grandes (centros M1 y M2) tienen el radio a/2. Los círculos medianos tienen el radio a/10 y para los círculos más pequeños es válido r =a/30.
¿Cuál es el área y la circunferencia de la sección del círculo que se extiende más allá del cuadrado ABCD a la derecha? - 6 puntos azules.
¿Cuál es la circunferencia y el área de la figura parcial roja RTFU? 8 puntos rojos.

en

Dürer letter G

„Look, I've constructed the letter G. So every letter for the German word W O C H E N A U F G A B E is given“, Lisa said proudly. (tasks 600, 612, 624, 636, 648, 660, 672, 684 and 696)

696 g

The construction base is square ABCD with the edge length a. (For the task we chose a = 10 cm.) How to construct the letter, you can see in the second picture.

696

The big circles (centre M1 and M2) do have the radius a/2. The medium-sized circles do have the radius a/10 and for the smallest circle is given r =a/30.
How big are area and perimeter of the circle part, that is on the right side above the square ABCD? - 6 blue points.
How big are perimeter and area of the red part figure RTFU? 8 red points.

it

„Guardate, ho costruito la lettera G. Con questo adesso abbiamo complettato la parola tedesca „WOCHENAUFGABE”, Lisa diceva tutta orgogliosa. (Compiti 600, 612, 624, 636, 648, 660, 672, 684 e 696)

696 g

Si inizia con un quadrato con la lunghezza dei lati a (Qui abbiamo scelto a = 10 cm). Nel secondo disegno si vede come viene costruito tutta la lettera.

696

I cerchi grandi (Centri M1 e M2) hanno un raggio di a/2. Quelli medi un raggio di a/10 ed i più piccoli r = a/30.
Quale sono l’area e la circonferenza della parte del cerchio che sta fuori del quadrato ABCD? – 6 punti blu
Quale sono l’area e la circonferenza della parte rossa RTFU? – 8 punti rossi

Lösung/solution/soluzione/résultat/Решение:

 Musterlösung von Karlludwig, danke --> pdf <--


Auswertung Serie 58

 Herzliche Glückwünsche zum Gewinn des Buchpreises, der geht an: Marit Grießer, Gitta und Karlludwig.

Auswertung Serie 58 (blaue Liste)

Platz Name Ort Summe Aufgabe
  685 686 687 688 689 690 691 692 693 694 695 696
1. Birgit Grimmeisen Lahntal 48 6 4 2 3 5 5 4 3 3 3 4 6
1. Hans Amstetten 48 6 4 2 3 5 5 4 3 3 3 4 6
1. Ingmar Rubin Berlin 48 6 4 2 3 5 5 4 3 3 3 4 6
1. Paulchen Hunter Heidelberg 48 6 4 2 3 5 5 4 3 3 3 4 6
1. Calvin Crafty Wallenhorst 48 6 4 2 3 5 5 4 3 3 3 4 6
1. Albert A. Plauen 48 6 4 2 3 5 5 4 3 3 3 4 6
1. Reinhold M. Leipzig 48 6 4 2 3 5 5 4 3 3 3 4 6
1. Maximilian Jena 48 6 4 2 3 5 5 4 3 3 3 4 6
1. Karlludwig Cottbus 48 6 4 2 3 5 5 4 3 3 3 4 6
1. Magdalene Chemnitz 48 6 4 2 3 5 5 4 3 3 3 4 6
2. HeLoh Berlin 47 6 4 2 3 5 5 3 3 3 3 4 6
2. Axel Kästner Chemnitz 47 6 4 2 3 5 5 4 3 2 3 4 6
2. Marit Grießer Sessenhausen 47 6 4 2 3 5 5 4 3 3 3 3 6
2. Alexander Wolf Aachen 47 6 4 2 3 4 5 4 3 3 3 4 6
3. Dana Ingolstadt 46 6 4 2 3 5 5 4 3 3 3 4 4
4. Hirvi Bremerhaven 45 6 4 2 3 5 5 4 3 - 3 4 6
5. Kurt Schmidt Berlin 44 5 4 2 3 5 5 4 3 - 3 4 6
6. Gerhard Palme Schwabmünchen 42 - 4 2 3 5 5 4 3 3 3 4 6
7. Frank R. Leipzig 41 - 4 2 2 5 5 4 3 3 3 4 6
8. Othmar Z. Weimar (Lahn) 39 6 4 2 3 5 5 4 3 - 3 4 -
9. Gitta Großsteinberg 38 6 4 - 3 3 5 4 3 3 3 4 -
10. Siegfried Herrmann Greiz 30 - 4 - - 4 5 4 3 3 3 4 -
11. Günter S. Hennef 28 - 4 2 - - 5 4 3 3 3 4 -
12. HIMMELFRAU Taunusstein 27 - - - - - 5 4 3 3 3 3 6
12. W. Gliwa Magdeburg 27 - 4 - 3 5 5 - 3 - 3 4 -
13. Helmut Schneider Su-Ro 23 - 4 2 3 - 5 - 3 3 3 - -
14. Laura Jane Abai Chemnitz 20 6 4 2 - - - 4 3 - 1 - -
14. Janet A. Chemnitz 20 6 4 2 - - - 4 3 - 1 - -
14. Linnea Böhm Chemnitz 20 6 - 2 - - - 4 - 1 3 4 -
15. Sophie Pöschel Chemnitz 16 - - 2 - 3 - - - - 3 4 -
15. Frank Römer Frankenberg 16 - - - - - 2 4 3 - 3 4 -
15. Luise Schlenkrich Chemnitz 16 - - - - 3 - 3 - - - 4 6
15. Henry Hasenknopf Chemnitz 16 6 - 2 - - - - - - - 4 4
16. Emily Seidel Chemnitz 14 - - 2 - 5 - - - - 3 4 -
17. Ronja Schobner Chemnitz 12 - 4 2 - - - - - - 3 3 -
17. Josefine Bohley Chemnitz 12 - - 2 3 - - - 3 - - 4 -
18. Lilly Barz Chemnitz 9 - - 2 - - - - - - 3 4 -
18. Ole Hering Chemnitz 9 - - 2 - - - - - - 3 4 -
18. Rufus Windrich Chemnitz 9 - - 2 - - 5 - - - 2 - -
18. Dominique Böttinger Chemnitz 9 - - 2 3 - - - - 2 2 - -
18. Volker Bertram Wefensleben 9 - 4 - - - 5 - - - - - -
19. Tommy Oeser Chemnitz 8 - - 2 - - - 4 - - 2 - -
19. Karoline Stingl Chemnitz 8 6 - 2 - - - - - - - - -
20. Mikko Winkler Chemnitz 7 - 2 - 3 - - - - 2 - - -
21. Felix Helmert Chemnitz 6 6 - - - - - - - - - - -
21. Ina Jahre Zwickau 6 6 - - - - - - - - - - -
21. Marie-Sophie Roß Chemnitz 6 6 - - - - - - - - - - -
21. Liuba Bässler Chemnitz 6 - - 2 - - - 4 - - - - -
21. Nico Plümer Chemnitz 6 6 - - - - - - - - - - -
22. Nagy-Balo Andras Budapest 5 - - - - 3 - - - - 2 - -
22. Florine Lorenz Chemnitz 5 5 - - - - - - - - - - -
22. Alexander Haupt Chemnitz 5 - - - - - - - - 3 2 - -
22. Maximilian Dotzauer Chemnitz 5 - - 2 3 - - - - - - - -
22. Ralf Kleinschmidt Frankfurt/Main 5 - - 2 - - - - - - 3 - -
23. Bernd Berlin 4 - 4 - - - - - - - - - -
23. Miriam Müller Chemnitz 4 - - - - - - - - - - 4 -
23. Amina Arndt Bad Kreuznach 4 - - - - - - - - - - 4 -
23. Luna Synnatzschke Chemnitz 4 - - - - - - - - - - 4 -
23. Sophie-Marie Scherzer Chemnitz 4 - - 2 2 - - - - - - - -
23. Maximilian Dotzauer Chemnitz 4 - - - - - - - - - - 4 -
23. Hernri Lorenz Chemnitz 4 - - 2 - - - - - - 2 - -
24. Frida Schwarzenberg Chemnitz 3 - - - - - - - 3 - - - -
24. Valentin Dotzauer Chemnitz 3 - - - 3 - - - - - - - -
24. Marie Reichelt Chemnitz 3 - - - - - - - - - 3 - -
24. Kim Amy Bunge Chemnitz 3 - - - - - - - - - - 3 -
24. Phileas Steinbach Chemnitz 3 - - - - - - - - - 3 - -
24. Louis R. Küchler Chemnitz 3 - - - - - - - - - 3 - -
24. Nora Frotscher Chemnitz 3 - - - - - - - 3 - - - -
24. Jule König Chemnitz 3 - - - - - - - - 3 - - -
24. Nele Suri Frank Chemnitz 3 - - - - - - - - 3 - - -
24. Finnja Rupsch Chemnitz 3 - - - 3 - - - - - - - -
24. Luise Steinbach Chemnitz 3 - - - - - - - 3 - - - -
25. Carolina Liebernickel Chemnitz 2 - - - - - - - - - 2 - -
25. Valentin Dotzauer Chemnitz 2 - - 2 - - - - - - - - -
25. Kara Wagner Chemnitz 2 - - - - - - - - - 2 - -

 

Auswertung Serie 58 (rote Liste)

Platz Name Ort Summe Aufgabe
  685 686 687 688 689 690 691 692 693 694 695 696
1. Reinhold M. Leipzig 58 6 4 2 4 5 9 7 3 3 3 4 8
1. Karlludwig Cottbus 58 6 4 2 4 5 9 7 3 3 3 4 8
1. Magdalene Chemnitz 58 6 4 2 4 5 9 7 3 3 3 4 8
1. Maximilian Jena 58 6 4 2 4 5 9 7 3 3 3 4 8
1. Hans Amstetten 58 6 4 2 4 5 9 7 3 3 3 4 8
1. Calvin Crafty Wallenhorst 58 6 4 2 4 5 9 7 3 3 3 4 8
1. Paulchen Hunter Heidelberg 58 6 4 2 4 5 9 7 3 3 3 4 8
2. Birgit Grimmeisen Lahntal 57 6 4 2 4 5 9 7 3 3 3 4 7
2. Ingmar Rubin Berlin 57 6 4 2 4 5 9 7 3 3 3 4 7
2. Alexander Wolf Aachen 57 6 4 2 4 4 9 7 3 3 3 4 8
3. Albert A. Plauen 56 6 4 2 4 4 9 6 3 3 3 4 8
3. Marit Grießer Sessenhausen 56 6 4 2 4 5 9 7 3 3 3 4 6
4. HeLoh Berlin 55 6 4 2 4 5 9 5 3 3 3 4 7
4. Hirvi Bremerhaven 55 6 4 2 4 5 9 7 3 - 3 4 8
5. Gerhard Palme Schwabmünchen 52 - 4 2 4 5 9 7 3 3 3 4 8
5. Dana Ingolstadt 52 6 4 2 4 5 6 5 3 2 3 4 8
6. Frank R. Leipzig 51 - 4 2 3 5 9 7 3 3 3 4 8
6. Axel Kästner Chemnitz 51 6 4 1 4 4 9 7 3 1 - 4 8
7. Kurt Schmidt Berlin 48 5 4 1 4 5 6 7 3 - 1 4 8
8. Gitta Großsteinberg 47 6 4 - 4 4 9 7 3 3 3 4 -
9. Othmar Z. Weimar (Lahn) 42 6 4 2 4 5 7 7 3 - 3 1 -
10. HIMMELFRAU Taunusstein 37 - - - - - 9 7 3 3 3 4 8
11. Günter S. Hennef 35 - 4 2 - - 9 7 3 3 3 4 -
12. Siegfried Herrmann Greiz 28 - 4 - - - 9 3 3 2 3 4 -
13. Helmut Schneider Su-Ro 26 - 4 2 4 - 7 - 3 3 3 - -
14. W. Gliwa Magdeburg 25 - 4 - 1 5 5 - 3 - 3 4 -
15. Volker Bertram Wefensleben 20 - 4 - - - 9 7 - - - - -
16. Janet A. Chemnitz 14 6 - 2 - - - 3 3 - - - -
16. Laura Jane Abai Chemnitz 14 6 - 2 - - - 3 3 - - - -
17. Rufus Windrich Chemnitz 13 - - 1 - - 9 - - - - 3 -
18. Henry Hasenknopf Chemnitz 10 5 - 1 - - - - - - - - 4
19. Linnea Böhm Chemnitz 9 5 - 1 - - - 3 - - - - -
20. Karoline Stingl Chemnitz 7 6 - 1 - - - - - - - - -
20. Liuba Bässler Chemnitz 7 - - 1 - - - 3 - - - 3 -
21. Frank Römer Frankenberg 6 - - - - - - 3 - - - 3 -
21. Felix Helmert Chemnitz 6 6 - - - - - - - - - - -
21. Ina Jahre Zwickau 6 6 - - - - - - - - - - -
21. Florine Lorenz Chemnitz 6 6 - - - - - - - - - - -
21. Marie-Sophie Roß Chemnitz 6 6 - - - - - - - - - - -
21. Tommy Oeser Chemnitz 6 - - 1 - - - 3 - - - 2 -
21. Nico Plümer Chemnitz 6 6 - - - - - - - - - - -
21. Ronja Schobner Chemnitz 6 - 2 1 - - - - - - - 3 -
22. Dominique Böttinger Chemnitz 5 - - 1 - - - - - - - 4 -
23. Nagy-Balo Andras Budapest 4 - - - - 3 - - - - 1 - -
23. Amina Arndt Bad Kreuznach 4 - - - - - - - - - - 4 -
23. Bernd Berlin 4 - 4 - - - - - - - - - -
24. Mikko Winkler Chemnitz 3 - - - - - - - - - - 3 -
24. Ralf Kleinschmidt Frankfurt/Main 3 - - - - - - - - - 3 - -
24. Kim Amy Bunge Chemnitz 3 - - - - - - - - - - 3 -
25. Nele Suri Frank Chemnitz 2 - - - - - - - - 2 - - -
26. Valentin Dotzauer Chemnitz 1 - - 1 - - - - - - - - -
26. Ole Hering Chemnitz 1 - - 1 - - - - - - - - -
26. Lilly Barz Chemnitz 1 - - 1 - - - - - - - - -
26. Hernri Lorenz Chemnitz 1 - - 1 - - - - - - - - -
26. Sophie Pöschel Chemnitz 1 - - 1 - - - - - - - - -

 

 

You have no rights to post comments.
Zum Kommentieren muss man angemeldet sein.