Serie 49

Beitragsseiten

Aufgabe 3

579.Wertungsaufgabe

„Das ist ein Ausdruck, der eine schöne Struktur hat, aber kompliziert aussieht“, meine Bernd zu seinem Opa. „Da hast du recht, aber es gibt viele Paare natürlicher Zahlen (x; y), die diese Gleichung erfüllen.“
579

Für y = 2 findet man mit etwas rechnen, das passende x ganz schnell. 3 blaue Punkte (Rechenweg bzw. Überlegung notieren)
Wie lassen sich allgemein die Paare (x; y) berechnen? 8 rote Punkte.

Die Lösung des Symbolrätsels bringt zwei zusätzliche blaue Punkte, aber nur wenn reguläre Punkte eingebracht werden. Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, gleiche Ziffer, verschiedene Symbole verschiedene Ziffern.  © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

579 symbol Batterien

Termin der Abgabe 27.09.2018. Ultimo termine di scadenza per l´invio è il 27.09.2018. Deadline for solution is the 27th. September 2018. Date limite pour la solution 27.09.2018. Resoluciones hasta el 27.09.2018. Beadási határidő 2018.09.27

hun

-Ez aztán a szép képlet, ami bonyolultnak tűnik – mondta Bernd a nagyapjának. – Igazad van, de több természetes szám is van, amik az egyenletbe illenek.
579
Ha y=2, mennyi az x? (2 kék pont, a számítás lépéseivel vagy gondolatmenetével)
Hogyan lehet általánosságban a számpárokat (x, y) kiszámolni? (8 piros pont)
A szimbólum rejtvény megoldásáért további két kék pontot kaphat, amennyiben a többi feladatért is szerzett pontot. A rejtvény megfejtésére érvényes: minden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket. ©HRGauern[at]@t-online.de

579 symbol Batterien

fr

"C'est une expression qui a une structure agréable, mais qui a l'air compliquée", a déclaré Bernd à son grand-père. "Tu as raison, mais il y a beaucoup de paires de nombres naturels (x; y) qui remplissent cette équation."579

Pour y = 2, on trouve rapidement le x correspondant avec un peu de calcul. 3 points bleus (notez le calcul ou la réflexion)
Comment les paires (x; y) peuvent-elles être calculées en général? 8 points rouges.

La solution de l'énigme apporte deux points bleus supplémentaires, mais seulement si des points réguliers ont été obtenus.
Règle pour l’énigme :Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. ©HRGauern[at]@t-online.de

579 symbol Batterien

en

“This is an equation that has a beautiful structure but looks complicated”, Bernd tells his granddad.
“You are right, but there are a lot of pairs of positive integers (x, y) that solve this equation.”
579

For y = 2 it is easy to find the matching x with a bit of calculating. - 3 blue points
How can you calculate pairs (x; y) in general? - 8 red points

Solving the picture-puzzle will get you two extra blue points, provided you also got points doing the regular maths problem. The rule for each picture puzzle is: Each icon represents one digit, same icons, same digits, different
icons, different digits.

579 symbol Batterien

sp:

„Esto es una expresión que tiene una estructura bonita, pero muy complicada a la vez“, le dice Bernd a su abuelo. „Tienes razón, pero hay muchas parejas de números naturales (x; y) que satisfacen la ecuación.“
579
Aceptando y = 2 se encuentra el resultado para x con poco esfuerzo de calculación. 3 puntos azules (anotar calculación)
Cómo se pueden calcular las parejas (x; y) generalmente? 8 puntos rojos
Por la resolución de rompecabeza de símbolos se recibe dos puntos azules adicionales si se ha ganado los puntos regulares antes. Para el rompecabeza aplica lo siguiente:
Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras.  ©HRGauern[at]@t-online.de

579 symbol Batterien

it

Stiamo cercando un traduttore dal tedesco all'italiano per il nostro problema matematico settimanale. Übersetzer deutsch --> italienisch gesucht.

La soluzione dell´indovinello simbolico apporta altri due punti blu, ma solo se si apportano punti regolari. Per l´indovinello vale: Ogni simbolo sta per una cifra, stessi simboli, stessa cifra, diversi simboli diverse cifre. ©HRGauern[at]@t-online.de

579 symbol Batterien

Lösung/solution/soluzione/résultat:
Eine schöne, knappe Darstellung der Lösung von Hans, danke. --> pdf <--

Und noch die Lösung von Reinhold M., die für y=3n+2 nimmt, bei Hans 3n -1, beides möglich:
für z:= DritteWurzel(Wurzel(x) - y) folgt
 1 + z = DritteWurzel(z^3 + 2 y).
Das gilt gdw. (kubieren - umkehrbar)
 z^3 + 2 y = 1 + 3 z + 3 z^2 + z^3
und das gdw.
 z^2 + z + 1/3 (1 - 2 y) = 0
mit den Lösungen
 z = - 1/2 +- Wurzel(1/4 - 1/3 (1 - 2 y))
   = - 1/2 ( 1 -+ 1/3 Wurzel(3) Wurzel(8 y - 1) ).
Damit folgt
 z^3 = Wurzel(x) - y
     = - 1/8 ( 1 -+ Wurzel(3) Wurzel(8 y - 1) + (8 y - 1) -+ 1/9 Wurzel(3) Wurzel(8 y - 1) (8 y - 1) )
     = - y +- 1/9 Wurzel(3) Wurzel(8 y - 1) (y + 1).
Damit folgt weiter
 x = ( z^3 + y )^2
   = 1/27 (8 y - 1) (y + 1)^2
   = 1/27 (8 y^3 + 15 y ^2 + 6 y - 1)
   = 1/27 (2 y - 1)^3 + y^2.
Folglich muss (2 y - 1)^3 durch 27 und also (2 y - 1) durch 3 teilbar sein, wenn x und y ganze Zahlen sind, also
 2 y ≡ 1 mod 3,
woraus
 y ≡ 2 mod 3
folgt. Es gibt im Lösungsfall also eine ganze Zahl n mit
 (1) y = 3 n + 2 (1).
Damit folgt für x
 (2) x = 1/27 (6 n + 3)^3 + (3 n + 2)^2
       = ( 8 n^3 + 12 n^2 + 6 n + 1 ) + ( 9 n^2 + 12 n + 4 )
       = 8 n^3 + 21 n^2 + 18 n + 5.
Wir wissen also jetzt: für jedes Lösungspaar gibt es eine ganze Zahl n mit (1), (2).
Gibt es aber nun noch weitere Bedingungen, die n erfüllen muss, damit tatsächlich eine Lösung in natürlichen Zahlen herauskommt?
Zunächst folgt aus (1) für y >= 0
 n >= 0,
und dann ist wegen (2) auch stets x >= 0
- und für n = 0 erhalten wir (endlich) die "blaue Lösung" y = 2, x = 5.
Weiter gilt stets
 x > y^2,
also für obiges z
 z > 0,
d.h. wir müssen die positive z-Lösung
 z := 1/2 ( 1/3 Wurzel(3) Wurzel(8 y - 1) - 1 )
nehmen. Damit sind aber alle Rechenschritte von unten nach oben exakt umkehrbar.
Die Lösungsmenge wird genau durch
 x = 8 n^3 + 21 n^2 + 18 n + 5,
 y = 3 n + 2,
 n >= 0 ganz bestimmt.

Beim Symbolrätsel hatte ich etwas Schwierigkeiten, die Symbole eindeutig zuzuordnen - es können ja höchstens 10 verschiedene sein, und mit tatsächlich 10 (gleich nur links oben der Zehner und links unten der Einer sowie der Mittelpunkt und der Einer rechts unten) geht es nicht auf. Also habe ich dann angenommen, dass nur die Fabrikate das identifizierende Merkmal sein sollen:
 AB / C =  D
  -   *    +
  A + C =  E
  =   =    =
 AA - F = GC.
Dann folgt nacheinander
 G = 1 (3. Spalte),
 A = 2 (3. Zeile),
 B = 4 (1. Spalte),
 C = 3 und D = 8 (1. Zeile mit 2. Spalte),
 F = 9 (2. Spalte oder 3. Zeile),
 E = 5 (2. Zeile oder 3. Spalte).
Damit ist die Lösung also
 24 / 3 =  8
  -   *    +
  2 + 3 =  5
  =   =    =
 22 - 9 = 13.

You have no rights to post comments.
Zum Kommentieren muss man angemeldet sein.