Serie-14

Beitragsseiten

Aufgabe 5

Ach oh je, über den Kreis muss ich noch etwas nachdenken, gut dass diesmal zwei Wochen Zeit sind. Hast du nicht noch etwas anderes aus dem Hefter vom Opa. Aber klar, schau mal:
Quadrate Aufgabe 14-5
Und worum geht es da? Also, du nimmst zwei Quadrate, eines mit der Kantenlänge 20 cm und eines mit der Kantenlänge 10 cm. Das Kleinere wird rechts genau an das Große gelegt und zwar irgendwo, ob unten, ob oben zwischenrein eben irgendwie Hauptsache genau dran. Dann werden die oberen rechten Ecken der Quadrate mit einer Geraden verbunden, anschließend die rechten unteren Ecken. Die Geraden schneiden sich dann in einem Punkt. Die Geraden bilden also mit der Kante des großen Quadrats ein Dreieck, fragte Mike nach. Genau. Die Frage ist nun, wie groß ist die Dreiecksfläche? Das wird ja wohl davon abhängen, wo sich das kleine Quadrat befindet. Sieht so aus, muss aber nicht sein.
Die Lösung für eine spezielle Lage bringt 4 Punkte ein, die allgemeine Lösung ist 8 Punkte wert.

Lösung

Hier die Beschreibung von Doreen Naumann, danke
Auch hier zunächst eine Beschreibung meiner Zeichnung.
Wir haben ein großes Quadrat mit einer Kantenlänge von 20 cm und genau obendrauf ein weiteres von 10 cm Kantenlänge. Nun verbinden wir die beiden oberen rechten und die beiden oberen linken Ecken. Die Geraden bilden mit der oberen Kante des großen Quadrats ein großes Dreieck(gD).
Die Lücke zwischen den linken Kanten des großen und kleinen Quadrats bezeichnen wir mit a, die Lücke zwischen den rechten Kanten des großen und kleinen Quadrats bezeichnen wir mit b.
10+a+b=20
Das große Dreieck setzt sich aus mehreren Teilen zusammen: aus dem kleinen Quadrat, dem kleinen Dreieck links der linken Kante des kleinen Quadrats(D1), dem kleinen Dreieck rechts der rechten Kante des kleinen Quadrats(D2) und dem kleinen Dreieck über der oberen Kante des kleinen Quadrats(D3).
Wenn man die kleinen Dreiecke links und rechts "zusammenschiebt"(d.h.das kleine Quadrat rausnimmt), entsteht ein Dreieck, das zu dem oberen Dreieck kongruent ist. Dazu müssen eine Seite und die zwei anliegenden Winkel übereinstimmen.
Seitenübereinstimmung: 10-Kantenlänge des kleinen Quadrats a+b=10
Winkelübereinstimmung: Übereinstimmung des linken Winkels im großen und im kleinen oberen Dreiecks, weil Stufenwinkel
Übereinstimmung des rechten Winkels im großen und im kleinen oberen Dreiecks, weil Stufenwinkel
Nun geht es an die Berechnung des Flächeninhalts:
b=10-a
D1: A1=1/2*10*a=5*a
D2: A2=1/2*10*b=5*(10-a)
A=A1+A2
A=5*a+5*(10-a)
A=50
Das ist gleichzeitig der Flächeninhalt von D1+D2 sowie von D3.
Nun müssen wir nur noch zusammenrechnen:
A(gD)=2*(A1+A2)+A(kleines Quadrat)
A(gD)=2*50+10²
A(gD)=200
Damit beträgt der Flächeninhalt des großes Dreiecks immer 200cm², egal wo man des kleine Quadrat platziert.