Serie 68
Beitragsseiten
Aufgabe 3
807. Wertungsaufgabe
deu
Nach einer Idee von Alexander Wolf, danke.
Bernd befestigte an der Decke seines Zimmers zwei Umlenkrollen A und B, die 5 Meter voneinander entfernt sind. Über diese Rollen führte er einen 12 Meter langen Nylonfaden, der ein vernachlässigbares Eigengewicht hat. An dem Faden befestigte Bernd mit Hilfe von Maria 12 Kugeln, die jeweils 102 Gramm wogen: 5 Kugeln genau in der Mitte des Fadens am Punkt C, 3 Kugeln am Ende des Fadens unterhalb der Rolle A und 4 Kugeln am Ende des Fadens unterhalb der Rolle B. Vorsichtig ließen Maria und Bernd die Kugeln los und beobachteten, wie sich der Faden mit den Kugeln eine Weile bewegte, bis sie schließlich zur Ruhe kamen. Bernd rief erstaunt: "Die Form, die der Faden zwischen den beiden Umlenkrollen gebildet hat, erinnert mich stark an das Dreieck des Pythagoras!" Maria maß die Seitenlängen des Dreiecks nach und konnte Bernds Beobachtung bestätigen.
Wie lang ist der Faden von der Umlenkrolle A bis zu den drei Kugeln und wie lang von der Umlenkrolle B bis zu den vier Kugeln? (2 blaue Punkte)
Angenommen, die Beobachtung, dass sich das Dreieck des Pythagoras gebildet hat, ist korrekt. Die drei Kugeln ziehen mit einer Kraft von 3 Newton an der Umlenkrolle A. Wie groß ist der Anteil dieser Kraft, der in Richtung der Umlenkrolle B wirkt? (4 blaue Punkte)
Mit welcher Kraft zieht die Umlenkrolle A an der Befestigung in der Decke? (+2 rote Punkte)
Wenn wir uns nicht sicher sind, ob das gebildeten Dreieck tatsächlich das Dreieck des Pythagoras ist, wie können wir dann ohne diese Annahme berechnen, welche Kraft an der Umlenkrolle A in Richtung B wirkt? (4 rote Punkte)
https://www.schulmodell.eu/aufgabe-der-woche.html
Termin der Abgabe 12.12.2024. Limtago por sendi viajn solvojn estas la 12-a de decembro 2024. Срок сдачи 12.12.2024. Ultimo termine di scadenza per l´invio è il 12.12.2024. Deadline for solution is the 12th. December 2024. Date limite pour la solution 12.12.2024. Soluciones hasta el 12.12.2024. Beadási határidő 2024.12.12. 截止日期: 2024.12.12. – 请用徳语或英语回答 Διορία παράδοσης λύσης 12/12/2024. Παρακαλείστε να υποβάλετε τις λύσεις στα αγγλικά ή στα γερμανικά.
الموعد النهائي للتسليم هو 12/12/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.
esperanto:
Laŭ ideo de s-ro Alexander WOLF, dankon al li.
Bernd fiksis ĉe la plafono de la ĉambro du returnajn rulilojn A kaj B, kiuj havas distancon de 5 metrojn unu de la alia. Trans la ruliloj etendiĝas nilona fadeno, kies pezon ni neglektas. Al la fadenon Bernd alkroĉas kun la helpo de Maria 12 kuglojn, ĉiu havas la pezon de 102 g: 5 kuglojn en la mezo de la fadeno ĉe la punkto C, 3 kuglojn ĉe la fino de la fadeno sub la rulilo A kaj 4 kuglojn ĉe la fino de fadeno sub la rulilo B. Tre atente Maria kaj Bernd lasis la kuglojn ŝvebi kaj spektas kiel la kugloj dum iom da tempo moviĝas kaj fine restas en siaj lokoj. Bernd miris kaj vokis: „Tiun formon meze de la ruliloj mi konas, tio memorigas min pri la triangulo de Pitagoro!“ Maria mezuris la leterojn de la triangulo kaj konfirmis la supozon de Bernd.
Kiom longa estas la fadeno sub la rulilo A ĝis la tri kugloj kaj kiom longa de la rulilo B ĝis la 4 kugloj? (2 bluaj poentoj)
Se oni akceptas ke estiĝis pitagora triangulo: La tri kugloj tiras per forto de 3 N ĉe la rulilo A. Kiom granda estas la parto de tiu forto, kiu efikas al la direkto de la rulilo B? (4 bluaj poentoj)
Kun kiom granda forto la rulilo A tiras de la plafono? (+2 ruĝaj poentoj)
Se ni ne certas ĉu la triangulo vere estas pitagora, kiel ni povas sen tiu aserto kalkuli kiu forto efikas de rulilo A al la direkto de B? (4 ruĝaj poentoj)
La limtago por sendi viajn solvojn estas la 12-a de decembro 2024. La solvojn skribu prefere en la germana, angla aŭ franca.
https://www.schulmodell.eu/3155-tasko-de-la-semajno-aufgabe-esperanto.html
arabisch-التمرين الإسبوعي:
المهمة 807:
شكراً لألكسندر وولفه على هذه المهمة.
قام برند بتثبيت بكرتين A , B في سقف غرفته، تفصل بينهما مسافة 5 أمتار. مرر حبلًا من النايلون طوله 12 مترًا عبر البكرتين، وكان وزن الحبل ضئيلًا. علَّق برند بمساعدة ماريا 12 كرة، تزن كل واحدة منها 102 غرام. علَّق 5 كرات في منتصف الحبل عند النقطة C، و3 كرات عند نهاية الحبل تحت البكرة A، و4 كرات عند نهاية الحبل تحت البكرة B .
أطلقا الكرات بحذر وراقبا حركة الحبل حتى وصل إلى حالة استقرار. قال برند بدهشة: "يبدو أن شكل الحبل يشبه إلى حد كبير مثلث فيثاغورس!" قامت ماريا بقياس أطوال الأضلاع وأكدت ملاحظة برند.
الأسئلة:
١. ما طول الحبل من البكرة A إلى الكرات الثلاث، وما طوله من البكرة B إلى الكرات الأربع؟ (نقطتان زرقاوان)
٢. بافتراض أن المثلث الناتج هو مثلث قائم كما لاحظ برند، وتؤثر الكرات الثلاث بقوة 3 نيوتن على البكرة A، ما هو مقدار القوة التي تؤثر باتجاه البكرة B؟ (4 نقاط زرقاء)
٣. ما مقدار القوة التي تؤثر بها البكرة A على تثبيتها في السقف؟ (نقطتان حمراء)
٤. إذا لم نكن متأكدين من أن المثلث الناتج هو مثلث قائم، فكيف يمكننا حساب القوة المؤثرة على البكرة A باتجاه البكرة B دون افتراض هذا؟ (4 نقاط حمراء)
موعد التسليم 12.12.2024
الموعد النهائي للتسليم هو /12/12/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.
https://www.schulmodell.eu/3150-arabisch-التمرين-الإسبوعي.html
griechisch:
Βασισμένο σε μια ιδέα του Alexander Wolf, ευχαριστώ.
Ο Bernd προσάρμοσε δύο τροχαλίες Α και Β στο ταβάνι του δωματίου του, σε απόσταση 5 μέτρων μεταξύ τους. Πέρασε ένα νάιλον νήμα μήκους 12 μέτρων, το οποίο έχει αμελητέο ίδιο βάρος, πάνω από αυτές τις τροχαλίες. Με τη βοήθεια της Maria ο Bernd προσάρμοσε στο νήμα 12 μπάλες, η καθεμία από τις οποίες ζύγιζε 102 γραμμάρια: 5 μπάλες ακριβώς στο κέντρο του νήματος στο σημείο C, 3 μπάλες στο τέλος του νήματος κάτω από την τροχαλία Α και 4 μπάλες στο τέλος του νήματος κάτω από την τροχαλία Β. Η Maria και ο Bernd άφησαν προσεκτικά τις μπάλες και παρακολουθούσαν το νήμα με τις μπάλες να κινείται για λίγο, μέχρι τελικά να σταματήσουν. Ο Bernd αναφώνησε έκπληκτος: „Το σχήμα που έχει σχηματίσει το νήμα ανάμεσα στις δύο τροχαλίες μου θυμίζει πολύ το τρίγωνο του Πυθαγόρα!“ Η Μαρία μέτρησε τα μήκη των πλευρών του τριγώνου και μπόρεσε να επιβεβαιώσει την παρατήρηση του Bernd.
Πόσο μακρύ είναι το νήμα από την τροχαλία Α μέχρι τις τρεις μπάλες και πόσο μακρύ από την τροχαλία Β μέχρι τις τέσσερις μπάλες; (2 μπλε κουκκίδες)
Υποθέστε ότι η παρατήρηση ότι το πυθαγόρειο τρίγωνο έχει σχηματιστεί είναι σωστή. Οι τρεις μπάλες έλκουν την τροχαλία Α με δύναμη 3 Newton. Πόσο μεγάλο είναι το ποσοστό αυτής της δύναμης που δρα προς την κατεύθυνση της τροχαλίας Β; (4 μπλε κουκκίδες)
Με ποια δύναμη η τροχαλία εκτροπής Α έλκει το εξάρτημα στην οροφή; (+2 κόκκινες κουκκίδες)
Αν δεν είμαστε σίγουροι αν το τρίγωνο που σχηματίζεται είναι όντως το πυθαγόρειο τρίγωνο, πώς μπορούμε να υπολογίσουμε τη δύναμη που δρα στην τροχαλία Α με κατεύθυνση Β χωρίς αυτή την υπόθεση; (4 κόκκινες κουκκίδες)
https://www.schulmodell.eu/3126-wochenaufgabe-griechisch.html
chin
第807题
此题灵感来源于亚历山大·沃尔夫,非常感谢!
伯恩德在他房间的天花板上安装了两个滑轮A和B,它们之间的距离为5米。伯恩德用一根12米长、重量可以忽略不计的尼龙线穿过这两个滑轮。
伯恩德在玛丽雅的帮助下,在尼龙绳上固定了12个小球,每个小球的重量为102克,其中5个小球正好固定在绳子中间的C点,3个小球固定在靠近滑轮A的一端下方,4个小球固定在靠近滑轮B的一端下方。
玛丽雅和伯恩德小心地放开小球,观察到绳子和小球移动了一会儿之后,最终静止下来。
伯恩德惊讶地喊道:“绳子在两个滑轮之间形成的形状让我想到毕达哥拉斯三角形!”
玛丽雅测量了三角形的边长,证实了伯恩德的观察。
问题:
从滑轮A到三颗小球的绳子长度是多少?从滑轮B到四颗小球的绳子长度是多少?(2个蓝点)
假设确实形成了一个毕达哥拉斯三角形,三个小球对滑轮A的拉力是3牛顿。这个拉力中有多少矢量分量是朝向滑轮B的方向的?(4个蓝点)
滑轮A以多大的拉力作用于天花板上的固定点?(+2个红点)
如果我们不确定形成的三角形是否是毕达哥拉斯三角形,那么我们该如何在不依赖这个假设的情况下,计算滑轮A施加在滑轮B方向上的拉力分量?
截止日期: 2024.12.12. – 请用徳语或英语回答
https://www.schulmodell.eu/2952-woch-chin.html
russ
По идее Александра Вольфа, спасибо.
Бернд прикрепил к потолку своей комнаты два шкива А и В, расположенные на расстоянии 5 метров друг от друга. По этим шкивам он протянул нейлоновую нить длиной 12 метров, имеющую пренебрежительный вес. С помощью Марии Бернд прикрепил к нити 12 шариков, каждый весом 102 грамма: 5 шариков ровно посередине нити в точке С, 3 шарика на конце нити ниже шкива А и 4 шарика на конце нити ниже шкива В. Мария и Бернд осторожно отпускают шарики и некоторое время наблюдают, как нить с шариками движется, пока наконец остановилась. Бернд в изумлении воскликнул: «Форму, которую образовала нить между двумя шкивами, напоминает мне треугольник Пифагора!» Мария измерила длины сторон треугольника и смогла подтвердить наблюдение Бернда.
Какова длина нити от шкива А до трёх шариков и от шкива В до четырёх шариков?
(2 синих очка)
Предположим, что наблюдение о том, что образовался треугольник Пифагора, верно. Три шарика тянут шкив А с силой 3 ньютона. Какова доля этой силы, действующей в направлении шкива В? (4 синих очка)
С какой силой шкив А действует на крепление в потолке? (+2 красных очка)
Если мы не уверены, является ли образовавшийся треугольник на самом деле треугольником Пифагора, как мы можем без этого предположения вычислить, какая сила действует на шкив A в направлении B? (4 красных очка)
hun
Bernd a szobája mennyezetére két csigát, A-t és B-t szerelt fel, amelyek 5 méter távolságra voltak egymástól. Ezeken a csigákon keresztül egy 12 méter hosszú, elhanyagolható saját tömegű nejlonszálat vezetett át. A szálra Bernd Mária segítségével 12 darab, egyenként 102 grammos golyót rögzített: 5 golyót pontosan a szál közepén, a C pontban, 3 golyót a szál végén az A csiga alatt, és 4 golyót a szál végén a B csiga alatt. Óvatosan elengedték a golyókat, és figyelték, ahogy a szál a golyókkal egy ideig mozgott, míg végül megnyugodott. Bernd csodálkozva felkiáltott: „A szál alakja, amely a két csiga között kialakult, erősen emlékeztet Püthagorasz háromszögére!” Mária megmérte a háromszög oldalainak hosszát, és megerősítette Bernd megfigyelését.
- Milyen hosszú a szál az A csigától a három golyóig, és milyen hosszú a szál a B csigától a négy golyóig? (2 kék pont)
- Tegyük fel, hogy a megfigyelés helyes, miszerint Püthagorasz háromszöge alakult ki. A három golyó 3 newton erővel húzza az A csigát. Mekkora ennek az erőnek az a része, amely a B csiga irányába hat? (4 kék pont)
- Mekkora erővel húzza az A csiga a mennyezethez rögzített pontot? (+2 piros pont)
- Ha nem vagyunk biztosak abban, hogy a kialakult háromszög valóban Püthagorasz háromszöge, hogyan tudjuk enélkül a feltételezés nélkül kiszámítani, hogy mekkora erő hat az A csigára a B irányába? (4 piros pont)
https://www.schulmodell.eu/2648-a-h%C3%A9t-feladata.html
frz
Basé sur une idée d'Alexander Wolf, merci.
Bernd a attaché deux poulies A et B au plafond de sa chambre, distantes de 5 mètres. Il a fait passer un fil de nylon de 12 mètres de long sur ces rouleaux, ce qui représente un poids négligeable. Avec l'aide de Maria, Bernd a attaché au fil 12 pelotes pesant chacune 102 grammes : 5 pelotes exactement au milieu du fil au point C, 3 pelotes au bout du fil sous le rouleau A et 4 pelotes au bout du fil sous le rouleau B. Maria et Bernd ont soigneusement lâché les pelotes et ont observé comment le fil avec les pelotes bougeait pendant un moment jusqu'à ce qu'elles s'immobilisent enfin. Bernd s'exclama avec étonnement : "La forme que le fil de nylon a formée entre les deux poulies me rappelle le triangle de Pythagore !" Maria a mesuré la longueur des côtés du triangle et a pu confirmer l'observation de Bernd.
Quelle est la longueur du fil depuis la poulie A jusqu’aux trois boules et quelle est la longueur du fil de la poulie B jusqu’aux quatre boules ? (2 points bleus)
Supposons que l’observation selon laquelle le triangle de Pythagore s’est formé soit correcte. Les trois boules tirent sur la poulie A avec une force de 3 Newtons. Quelle est la proportion de cette force qui agit en direction de la poulie B ? (4 points bleus)
Avec quelle force le rouleau de A tire-t-il sur la fixation au plafond ? (+2 points rouges)
Si on n’est pas sûrs que le triangle formé est réellement le triangle de Pythagore, comment peut-on calculer quelle force agit sur la poulie A dans la direction B sans cette hypothèse ? (4 points rouges)
https://www.schulmodell.eu/2201-probleme-de-maths-de-la-semaine.html
esp
„807. tareas de puntuació
Bernd fijó en el techo de su habitación dos poleas, A y B, separadas por una distancia de 5 metros. A través de estas poleas pasó un hilo de nailon de 12 metros de longitud, cuyo peso propio es despreciable. En el hilo, Bernd, con la ayuda de María, colocó 12 bolas, cada una con un peso de 102 gramos: 5 bolas justo en el centro del hilo, en el punto C; 3 bolas en un extremo del hilo, debajo de la polea A; y 4 bolas en el otro extremo, debajo de la polea B. Con cuidado, María y Bernd soltaron las bolas y observaron cómo el hilo, junto con las bolas, se movía durante un tiempo hasta que finalmente quedó en reposo. Bernd exclamó asombrado: "¡La forma que ha tomado el hilo entre las dos poleas me recuerda mucho al triángulo de Pitágoras!" María midió las longitudes de los lados del triángulo y pudo confirmar la observación de Bernd.
¿Cuánto mide el hilo desde la polea A hasta las tres bolas, y cuánto desde la polea B hasta las cuatro bolas? (2 puntos azules)
Suponiendo que la observación de que se ha formado un triángulo de Pitágoras es correcta, las tres bolas ejercen una fuerza de 3 newtons sobre la polea A. ¿Qué componente de esta fuerza actúa en dirección hacia la polea B? (4 puntos azules)
¿Con qué fuerza tira la polea A del soporte en el techo? (+2 puntos rojos)
Si no estamos seguros de que el triángulo formado sea realmente un triángulo de Pitágoras, ¿cómo podríamos calcular, sin hacer esta suposición, la fuerza que actúa en la polea A en dirección hacia la polea B? (4 puntos rojos)
Fecha de entrega: 12.12.2024.
https://www.schulmodell.eu/2412-ejercicio-de-matem%C3%A1ticas-semanal.html
en
Based on an idea by Alexander Wolf, thank you.
Bernd attached two pulleys A and B to the ceiling of his room, 5 metres apart. He passed a 12 metre long nylon thread, which has a negligible dead weight, over these pulleys. With the help of Maria, Bernd attached 12 balls to the thread, each weighing 102 grams: 5 balls exactly in the centre of the thread at point C, 3 balls at the end of the thread below pulley A and 4 balls at the end of the thread below pulley B. Maria and Bernd carefully let go of the balls and watched as the thread with the balls moved for a while until they finally came to rest. Bernd exclaimed in amazement: ‘The shape that the thread has formed between the two pulleys reminds me a lot of Pythagoras’ triangle!’ Maria measured the side lengths of the triangle and was able to confirm Bernd's observation.
How long is the thread from pulley A to the three balls and how long from pulley B to the four balls? (2 blue dots)
Assume that the observation that the Pythagorean triangle has formed is correct. The three balls pull on pulley A with a force of 3 Newtons. How large is the proportion of this force that acts in the direction of pulley B? (4 blue points)
With what force does the deflection pulley A pull on the attachment in the ceiling? (+2 red points)
If we are not sure whether the triangle formed is actually the Pythagorean triangle, how can we calculate the force acting on the deflection pulley A in direction B without this assumption? (4 red points)
Deadline for solution is the 12th. December.
https://www.schulmodell.eu/1453-this-weeks-maths-problem.html
it
Basato su un'idea di Alexander Wolf, grazie.
Bernd ha fissato al soffitto della sua stanza due carrucole A e B, distanti 5 metri l'una dall'altra. Ha fatto passare sopra queste carrucole un filo di nylon lungo 12 metri, il cui peso proprio è trascurabile. Sul filo, Bernd ha fissato con l'aiuto di Maria 12 sfere, ognuna del peso di 102 grammi: 5 sfere esattamente nel punto centrale del filo, nel punto C; 3 sfere all'estremità del filo sotto la carrucola A; e 4 sfere all'estremità del filo sotto la carrucola B. Maria e Bernd lasciarono con cautela le sfere e osservarono come il filo con le sfere si muoveva per un po', finché alla fine si fermò. Bernd esclamò stupito: "La forma che il filo tra le due carrucole ha assunto mi ricorda molto il triangolo di Pitagora!" Maria misurò le lunghezze dei lati del triangolo e poté confermare l'osservazione di Bernd.
Quanto è lungo il filo dalla carrucola A fino alle tre sfere e quanto dalla carrucola B fino alle quattro sfere? (2 punti blu)
Supponendo che l'osservazione che si sia formato il triangolo di Pitagora sia corretta. Le tre sfere tirano con una forza di 3 Newton sulla carrucola A. Quanto è grande la componente di questa forza che agisce in direzione della carrucola B? (4 punti blu)
Con quale forza la carrucola A tira sull'attacco al soffitto? (+2 punti rossi)
Se non siamo sicuri che il triangolo formato sia effettivamente il triangolo di Pitagora, come possiamo allora, senza questa supposizione, calcolare quale forza agisce sulla carrucola A in direzione di B? (4 punti rossi)
https://www.schulmodell.eu/1984-problema-di-matematica-della-settimana.html
x
Lösung/solution/soluzione/résultat/Решение:
Musterlösung kommt, wenn es Fotos vom realen Experiment gibt, bitte Geduld