Serie 66
Beitragsseiten
Serie 66
Hier werden die Aufgaben 781 bis 792 veröffentlicht.
Aufgabe 1
Wertungsaufgabe 781
Logikaufgabe
Maria bereitet Veranstaltungen mit den besten 5 Jungs (Anton, Dieter, Georg, Matthias und Quentin) der Literaturgruppe ihrer Schule vor. Geboren sind die 2005, 2007, 2009, 2011 bzw. 2013. Sie wohnen alle in der Nähe der Schule – in der Schlossstraße, Berliner Straße, der Michaelstraße, der Johannesstraße bzw. in der Parkstraße. Jeder ist auf einem Gebiet (Gedichte, Tagebücher, Märchen, Liedtexte bzw. Kurzgeschichten) ein Spezialist. Maria hat folgende Informationen auf ihrem Zettel notiert.
- Anton, der Experte für Kurzgeschichten, wohnt in der Johannesstraße.
- Der Älteste der Fünf wohnt in der Berliner Straße, aber er heißt nicht Dieter.
- In der Schlossstraße wohnt der Experte, der zwei Jahre älter ist als Georg.
- Im Jahr 2013 wurde der Liedtexter geboren.
- Quentin ist der Verfasser von Gedichten.
- In der Parkstraße wohnt der Verfasser von tollen Tagebüchern.
- Matthias wurde im Jahr 2009 geboren und mag Tagebücher überhaupt nicht.
Wer wohnt in welcher Straße? Die Geburtsjahre sind welchem der Experten zuzuordnen?
Es gibt 6 blaue Punkte.
Name |
Geburtsjahr |
Straße |
Experte für ... |
Anton |
|||
Dieter |
|||
Georg |
|||
Matthias |
|||
Quentin |
Lisa unterstützt Maria bei der Organisation der Veranstaltungen, die jeweils 18.00 Uhr stattfinden. (Je eine am Montag, am Dienstag, am Mittwoch, am Donnerstag und die letzte am Freitag.) Die Spezialisten für Literatur tragen abwechselnd mit einem Mädchen aus ihren Werken vor (Louise, Mira, Petra, Odette bzw. Thelma). Jede Veranstaltung bezieht sich auf ein Meer (Rotes Meer, Mittelmeer, Schwarzes Meer, Ostsee bzw. Nordsee).
Lisa gibt die folgenden Informationen auch an Mike weiter.
- Die Liedtexte stehen direkt nach dem Beitrag von Louise, aber vor dem Thema Mittelmeer auf dem Programm.
- Mira, die beim Ostseebeitrag dabei ist, hat ihren Auftritt genau einen Tag später als die Märchenvorstellung.
- Am Montag wurden die Tagebücher vorgestellt, aber nicht von Thelma.
- Petra, die die Gedichte mit vortrug, beschäftigte sich mit dem Mittelmeer oder der Ostsee.
- Das Schwarze Meer war Thema am Mittwoch.
- Die Kurzgeschichten beschäftigten sich mit dem Roten Meer.
An welchem Tag traten die Mädchen auf? Welches Meer bzw. welche Art von Literatur wurde präsentiert? 6 rote Punkte.
Wochentag |
Meer |
Name des Mädchens |
Art der Literatur |
Montag |
|||
Dienstag |
|||
Mittwoch |
|||
Donnerstag |
|||
Freitag |
Vorlage als pdf
https://www.schulmodell.eu/aufgabe-der-woche.html
Termin der Abgabe 28.03.2024. Limtago por sendi viajn solvojn estas la 28-a de marto 2024. Срок сдачи 28.03.2024. Ultimo termine di scadenza per l´invio è il 28.03.2024. Deadline for solution is the 28th. March 2024. Date limite pour la solution 28.03.2024. Soluciones hasta el 28.03.2024. Beadási határidő 2024.03.28 截止日期: 2024.03.28 – 请用徳语或英语回答 Διορία παράδοσης λύσης 28/03/2024 Παρακαλείστε να υποβάλετε τις λύσεις στα αγγλικά ή στα γερμανικά.
الموعد النهائي للتسليم هو 28/03/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.
esperanto:
Tasko pri logiko
Maria pretigas eventojn kun la plej bonaj knaboj (Anton, Dieter, Georg, Matthias kaj Quentin) de la literatura grupo de la lernejo. Ili naskiĝis en la jaroj 2005, 2007, 2009, 2011 resp. 2013. Ili ĉiuj loĝas proksime al la lernejo — en la Kastelstrato, Berlina Strato, Mikaelostrato, Johanostrato resp. Parkstrato. Ĉiu estas specialisto por literatura genro (poemoj, taglibroj, fabeloj, kanttekstoj kaj rakontetoj). Maria notis sekvajn informojn sur sian paperon.
1. Anton, la specialisto pri rakontetoj, loĝas en la Johanostrato.
2. La plej aĝa de la kvinopo loĝas en la Berlina Strato, sed tiu ne estas Dieter.
3. En la Kastelstrato loĝas specialisto, kiu estas du jarrón pli aĝa ol Georg.
4. En la jaro 2013 naskiĝis la kanttekstulo.
5. Quentin kreas poemojn.
6. En la Parkstrato loĝas la kreanto de bonegaj taglibroj.
7. Matthias naskiĝis en la jaro 2009 kaj tute ne ŝatas taglibrojn.
Kiu loĝas en kiu strato? Kiam naskiĝis kiu specialisto?
Haveblas 6 bluaj poentoj.
nomo |
naskiĝjaro |
strato |
specialisto por … |
Anton |
|||
Dieter |
|||
Georg |
|||
Matthias |
|||
Quentin |
Lisa subtenas Maria-n dum la organizado de la eventoj, kiuj okazas ĉiuj je 18:00 h. (Unu evento okazas lunde, unu marde, unu merkrede, unu ĵaŭde kaj la lasta vendrede.) La specialistoj prelegas el siaj verkoj, kune prelegas kanbino dum ĉiu evento (Louise, Mira, Petra, Odette resp. Thelma). Ĉiu evento dilatas al unu specifa maro (Ruĝa Maro, Mediteraneo, Nigra Maro, Balta Maro resp. Norda Maro).
Lisa donas sekvajn informojn al Mike.
1. La kanttekstoj estas tuj post la kontribuo de Louise, sed antaŭ la temo Mediteraneo.
2. Mira, kiu kontribuas pri la Balta Maro, havas sian prezentadon unu tagon post la fabeloj.
3. Dum lundo oni prezentis la taglibrojn, sed ne Thelma faris tion.
4. Petra prelegis poemojn pri Mediteraneo aŭ pri la Balta Maro.
5. La Nigra Maro estis temo dum merkredo.
6. La rakontetoj temis pri la Ruĝa Maro.
Je kiu tago kiu knabino prelegis? Kiu maro kaj kiu literatura genro estis prezentataj? 6 ruĝaj poentoj.
tago |
maro |
nomo de la knabino |
literatura genro |
lundo |
|||
mardo |
|||
merkredo |
|||
ĵaŭdo |
|||
vendredo |
formularo kiel pdf
Limtago por sendi viajn solvojn estas la 28-a de marto 2024. La solvojn skribu prefere en la germana, angla aŭ franca.
https://www.schulmodell.eu/3155-tasko-de-la-semajno-aufgabe-esperanto.html
arabisch-التمرين الإسبوعي:
الموعد النهائي للتسليم هو /28/03/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.
https://www.schulmodell.eu/3150-arabisch-التمرين-الإسبوعي.html
griechisch:
Εργασία λογικής
Η Μaria προετοιμάζει εκδηλώσεις με τα 5 καλύτερα αγόρια (Anton, Dieter, Georg, Matthias και Quentin) από τη λογοτεχνική ομάδα του σχολείου της. Γεννήθηκαν το 2005, το 2007, το 2009, το 2011 και το 2013 αντίστοιχα και ζουν όλοι κοντά στο σχολείο - στην Schlossstraße, την Berliner Straße, την Michaelstraße, την Johannesstraße και την Parkstraße. Η καθεμία είναι ειδική σε έναν τομέα (ποιήματα, ημερολόγια, παραμύθια, στίχοι τραγουδιών ή διηγήματα). Η Maria έχει σημειώσει τις ακόλουθες πληροφορίες στο χαρτί της.
- Ο Anton, ο ειδικός για τα διηγήματα, ζει στην Johannesstraße.
2. Ο μεγαλύτερος από τους πέντε ζει στην Berliner Straße, αλλά το όνομά του δεν είναι Dieter.
3. Ο εμπειρογνώμονας που είναι δύο χρόνια μεγαλύτερος από τον Georg ζει στην Schlossstraße.
4 .ο τραγουδοποιός έχει γεννηθεί το 2013.
5. Ο Quentin είναι ο συγγραφέας ποιημάτων.
6. Ο συγγραφέας των σπουδαίων ημερολογίων ζει στην Parkstraße.
7.Ο Matthias γεννήθηκε το 2009 και δεν του αρέσουν καθόλου τα ημερολόγια.
Ποιος μένει σε ποια οδό; Ποιος από τους ειδικούς μπορεί να αποδοθεί σε ποιο έτος γέννησης;
Υπάρχουν 6 μπλε κουκίδες.
Όνομα |
Έτος γέννησης |
Οδός |
Εμπειρογνώμονας για ... |
Anton |
|||
Dieter |
|||
Georg |
|||
Matthias |
|||
Quentin |
Η Lisa υποστηρίζει τη Maria στην οργάνωση των εκδηλώσεων, οι οποίες πραγματοποιούνται στις 6.00 μ.μ. (Μία τη Δευτέρα, μία την Τρίτη, μία την Τετάρτη, μία την Πέμπτη και η τελευταία την Παρασκευή). Οι ειδικοί της λογοτεχνίας εναλλάσσονται με ένα κορίτσι για να διαβάσουν από τα έργα τους (Louise, Mira, Petra, Odette ή Thelma). Κάθε εκδήλωση σχετίζεται με μια θάλασσα (Ερυθρά Θάλασσα, Μεσόγειος Θάλασσα, Μαύρη Θάλασσα, Βαλτική Θάλασσα ή Βόρεια Θάλασσα).
Η Lisa διαβιβάζει επίσης τις ακόλουθες πληροφορίες στον Μike.
- Οι στίχοι του τραγουδιού βρίσκονται στο πρόγραμμα αμέσως μετά τη συμβολή της Louise, αλλά πριν από το θέμα της Μεσογείου.
- Η Mira, η οποία συμμετέχει στη συνεισφορά για τη Βαλτική Θάλασσα, έχει την παράστασή της ακριβώς μία ημέρα αργότερα από την παράσταση του παραμυθιού.
- τα ημερολόγια παρουσιάστηκαν τη Δευτέρα, αλλά όχι από τη Thelma.
- Η Petra, η οποία επίσης διάβασε τα ποιήματα, επικεντρώθηκε στη Μεσόγειο ή στη Βαλτική Θάλασσα.
- Η Μαύρη Θάλασσα ήταν το θέμα της Τετάρτης.
- Τα διηγήματα αφορούσαν την Ερυθρά Θάλασσα.
Σε ποια ημέρα έδωσαν παράσταση τα κορίτσια; Ποια θάλασσα ή είδος λογοτεχνίας παρουσιάστηκε; 6 κόκκινες κουκίδες.
Ημέρα της εβδομάδας |
Θάλασσα |
Όνομα του κοριτσιού |
Τύπος λογοτεχνίας |
Δευτέρα |
|||
Τρίτη |
|||
Τετάρτη |
|||
Πέμπτη |
|||
Παρασκευή |
https://www.schulmodell.eu/3126-wochenaufgabe-griechisch.html
chin
第66系列
第781题: 逻辑题
玛丽雅正在为学校文学小组里最优秀的5个男孩子筹备活动。 五个男孩子分别是: 安童(Anton)、迪特(Dieter)、乔治(Georg)、马蒂亚斯(Matthias)和坤廷(Quentin)。
他们出生于: 2005年、2007年、2009年、2011年和2013年。他们也都住在学校附近,地址是:宫廷大街(Schlossstraße)、柏林大街(Berliner Straße)、米歇尔大街(Michaelstraße)、约翰内斯大街(Johannesstraße)和公园大街(Parkstraße)。
他们每个人都有自己擅长的文学写作领域, 有诗歌、日记、童话、歌词和短篇小说。
玛丽雅记录了以下信息:
- 安童(Anton)擅长写短篇小说,他住在约翰内斯大街(Johannesstraße)。
2. 五个人中年龄最大的人住在柏林大街(Berliner Straße),但这个人不是迪特(Dieter)。
3. 住在宫廷大街(Schlossstraße)的作家比乔治(Georg)大两岁。
4. 2013年出生的男孩儿擅长写歌词。
5. 坤廷(Quentin)是位诗人。
6. 在公园大街(Parkstraße)住着的是一位擅长写日记的作家。
7. 马蒂亚斯(Matthias)出生于2009年,但他不喜欢写日记。
请确定谁住在哪条街上,以及每个人的出生年份和擅长的领域。 6个蓝点
姓名 出生年份 街道 擅长的文学领域
安童Anton
迪特Dieter
乔治Georg
马蒂亚斯Matthias
坤廷Quentin
丽莎帮助玛丽雅安排组织这次活动,活动是从星期一到星期五的每天下午6点举行的。
文学作家们的作品由五个女孩来演讲。女孩们是: 路易泽(Louise)、米拉(Mira)、佩特拉(Petra)、欧迪特(Odette)和特尔玛(Thelma)
每个项目都会涉及到一个海洋,这些海洋的名字是: 红海、地中海、黑海、波罗的海和北海。
丽莎向迈克传达了以下信息。
- 歌词作品是在路易泽(Louise)的演讲之后,但是是在涉及地中海的话题之前。
2. 米拉(Mira)讲述的是关于波罗的海,比介绍童话作品的正好晚一天。
3. 星期一介绍日记作品,但不是由特尔玛(Thelma)介绍的。
4. 佩特拉(Petra)演讲的是诗歌,涉及到的是地中海或者波罗的海。
5. 星期三介绍的主题是关于黑海。
6. 短篇小说涉及到的是红海。
根据这些信息,请确定女孩们在哪一天演讲?涉及到的是哪个海洋和文学类型? 6个红点
星期 海洋 女孩名字 文学类型
星期一
星期二
星期三
星期四
星期五
截止日期: 2024.03.28. – 请用徳语或英语回答
https://www.schulmodell.eu/2952-woch-chin.html
rus
Начало серии 66
781 Задача по логике Мария готовит мероприятия с пятью лучшими мальчиками (Антоном, Дитером, Георгом, Маттиасом и Квентином) из литературного кружка своей школы. Они родились в 2005, 2007, 2009, 2011 и 2013 годах. Все они живут недалеко от школы – на улицах Шлоссштрассе, Берлинер Штрассе, Михаэльштрассе, Йоханнесштрассе и Паркштрассе. Каждый является специалистом в одной области (стихи, дневники, сказки, тексты песен или рассказы). Мария записала на своём листке бумаги следующую информацию. 1. Антон, специалист по рассказам, живёт на Йоханнесштрассе. 2. Самый старший из пятерых живёт на Берлинерштрассе, но зовут его не Дитер. 3. Эксперт, который на два года старше Георга, живёт на Шлоссштрассе. 4. Автор песен родился в 2013 году. 5. Квентин — автор стихов. 6. Автор замечательных дневников живёт на Паркштрассе. 7. Маттиас родился в 2009 году и вообще не любит дневников. Кто на какой улице живёт? Кому из экспертов можно присвоить какой год рождения? 6 синих очков
Имя |
Год рождения |
Улица |
Эксперт по... |
Антон |
|||
Дитер |
|||
Георг |
|||
Маттиас |
|||
Квентин |
Лиза поддерживает Марию в организации мероприятий, которые состоятся в 18:00 часов. (По одному в понедельник, вторник, среду, четверг и последнее в пятницу.) Специалисты по литературе читают свои произведения по очереди вместе с одной из девушек (Луизой, Мирой, Петрой, Одеттой и Тельмой соответственно). Каждое событие связано с каким-либо морем (Красным, Средиземным, Чёрным, Балтийским или Северным морем).
Лиза передаёт Майку также следующую информацию.
- Тексты песен находятся в программе сразу после выступления Луизы, но перед темой Средиземного моря.
- Мира, участвующая в выступлении о Балтийском море, имеет своё выступление ровно на день позже представления сказок.
- В понедельник дневники были представлены, но не Тельмой.
- Петра, читавшая стихи, имела дело со Средиземным или Балтийским морем.
- Чёрное море было темой среды.
- Рассказы были посвящены Красному морю.
В какой день девушки выступали? Какое море или какой вид литературы были представлены?
6 красных очков
Будний день |
Море |
Имя девушки |
Вид литературы |
Понедельник |
|||
Вторник |
|||
Среда |
|||
Четверг |
|||
Пятница |
Шаблон в формате PDF
hun
https://www.schulmodell.eu/2648-a-h%C3%A9t-feladata.html
frz
Exercice logique
Maria prépare des événements avec les 5 meilleurs garçons (Anton, Dieter, Georg, Matthias et Quentin) du groupe de littérature de son école. Ils sont nés en 2005, 2007, 2009, 2011 et 2013. Ils habitent tous à proximité de l'école, dans la Schlossstrasse, la Berliner Strasse, la Michaelstrasse, la Johannesstrasse et la Parkstrasse. Chacun est spécialiste d'un domaine (poèmes, journaux intimes, contes de fées, paroles de chansons ou histoire courte). Maria a noté les informations suivantes sur son bout de papier.
- Anton, l'expert en histoire courte, habite dans la Johannesstrasse.
- Le plus âgé des cinq vit dans la Berliner Strasse, mais il ne s'appelle pas Dieter.
- L'expert, qui a deux ans de plus que Georg, habite Schlossstrasse.
- L'auteur-compositeur est né en 2013.
- Quentin est un écrivain de poèmes.
- L'auteur de journaux intimes habite dans la Parkstrasse.
- Matthias est né en 2009 et n'aime pas du tout les journaux intimes.
Qui habite dans quelle rue ? À quel expert peut-on attribuer les années de naissance ?
Il y a 6 points bleus.
Nom |
Année de naissance |
Rue |
Expert de… |
Anton |
|||
Dieter |
|||
Georg |
|||
Matthias |
|||
Quentin |
Lisa soutient Maria dans l'organisation des événements, qui ont lieu à 18h. (Un le lundi, un mardi, un mercredi, un jeudi et un dernier le vendredi.) Les spécialistes de la littérature lisent à tour de rôle des extraits de leurs ouvrages avec une fille (respectivement Louise, Mira, Petra, Odette et Thelma). Chaque événement concerne une mer (mer Rouge, Méditerranée, mer Noire, mer Baltique ou mer du Nord).
Lisa transmet également les informations suivantes à Mike.
1.Les paroles des chansons sont au programme juste après la contribution de Louise, mais avant le thème de la Méditerranée.
- Mira, qui fait partie de la contribution de la mer Baltique, apparaît exactement un jour après le spectacle du conte de fées.
- Lundi, les journaux intimes ont été présentés, mais pas par Thelma.
- Petra, qui récitait les poèmes, parlait de la Méditerranée ou de la mer Baltique.
- La mer Noire était le thème de mercredi.
- Les histoires courtes traitaient de la mer Rouge.
Quel jour les filles ont-elles joué ? Quelle mer ou quel type de littérature a été présenté ? 6 points rouges.
Jour de la semaine |
Mer |
Prénom de la fille |
Type de littérature |
Lundi |
|||
Mardi |
|||
Mercredi |
|||
Jeudi |
|||
Vendredi |
https://www.schulmodell.eu/2201-probleme-de-maths-de-la-semaine.html
esp
https://www.schulmodell.eu/2412-ejercicio-de-matem%C3%A1ticas-semanal.html
en
Logic task
Maria prepares events with the best 5 boys (Anton, Dieter, Georg, Matthias and Quentin) from her school's literature group. They were born in 2005, 2007, 2009, 2011 and 2013 respectively and all live near the school - in Schlossstraße, Berliner Straße, Michaelstraße, Johannesstraße and Parkstraße. Each is a specialist in one area (poems, diaries, fairy tales, song lyrics or short stories). Maria has noted the following information on her piece of paper.
1. Anton, the expert for short stories, lives in Johannesstraße.
2. the eldest of the five lives in Berliner Straße, but his name is not Dieter.
3. The expert who is two years older than Georg lives in Schlossstraße.
4. the songwriter was born in 2013.
5 Quentin is the author of poems.
6 The author of great diaries lives in Parkstraße.
7 Matthias was born in 2009 and doesn't like diaries at all.
Who lives in which street? Which of the experts can be assigned to which year of birth?
There are 6 blue points.
name |
year of birth |
street |
expert for ... |
Anton |
|||
Dieter |
|||
Georg |
|||
Matthias |
|||
Quentin |
Lisa supports Maria in organising the events, which take place at 6.00 pm. (One on Monday, one on Tuesday, one on Wednesday, one on Thursday and the last one on Friday). The literature specialists take turns with a girl to read from their works (Louise, Mira, Petra, Odette or Thelma). Each event refers to a sea (Red Sea, Mediterranean Sea, Black Sea, Baltic Sea or North Sea).
Lisa also passes on the following information to Mike.
1. the song lyrics are on the programme directly after Louise's contribution, but before the Mediterranean theme.
2. Mira, who is part of the Baltic Sea contribution, has her performance exactly one day later than the fairy tale performance.
3. the diaries were presented on Monday, but not by Thelma.
4 Petra, who also read the poems, focussed on the Mediterranean or the Baltic Sea.
5. The Black Sea was the topic on Wednesday.
6. the short stories were about the Red Sea.
On which day did the girls perform? Which sea or type of literature was presented? 6 red points.
day of the week |
sea |
name of the girl |
sort of literature |
Monday |
|||
Tuesday |
|||
Wednesday |
|||
Thursday |
|||
Friday |
Deadline for solution is the 28th. March 2024.
https://www.schulmodell.eu/1453-this-weeks-maths-problem.html
it
Maria sta preparando eventi con i migliori 5 ragazzi (Anton, Dieter, Georg, Matthias e Quentin) del gruppo letterario della sua scuola. Sono nati nel 2005, 2007, 2009, 2011 rispettivamente 2013. Tutti vivono vicino alla scuola - in Schlossstraße, Berliner Straße, Michaelstraße, Johannesstraße o Parkstraße. Ognuno è specialista in un campo (poesie, diari, fiabe, testi delle canzoni o racconti brevi). Maria ha annotato le seguenti informazioni sul suo foglietto.
- Anton, esperto in racconti brevi, vive in Johannesstraße.
- Il più anziano dei cinque vive in Berliner Straße, ma non si chiama Dieter.
- In Schlossstraße vive l'esperto che è due anni più grande di Georg.
- Nel 2013 è nato l'autore dei testi delle canzoni.
- Quentin è l'autore delle poesie.
- In Parkstraße vive l'autore di fantastici diari.
- Matthias è nato nel 2009 e non gli piacciono affatto i diari.
Chi vive in quale strada? A quale esperto si riferiscono gli anni di nascita?
Ci sono 6 punti blu.
Nome Anno di nascita Strada Esperto in ...
Anton
Dieter
Georg
Matthias
Quentin
Lisa sta aiutando Maria nell'organizzazione degli eventi, che iniziano alle 18.00. (Uno ciascuno il lunedì, il martedì, il mercoledì, il giovedì e l'ultimo il venerdì.) Gli specialisti della letteratura si alternano a leggere con una ragazza dai loro lavori (Louise, Mira, Petra, Odette o Thelma). Ogni evento si riferisce a un mare (Mar Rosso, Mar Mediterraneo, Mar Nero, Mar Baltico o Mare del Nord). Lisa trasmette le seguenti informazioni anche a Mike.
- I testi delle canzoni vengono eseguiti subito dopo la performance di Louise, ma prima dell'argomento Mare Mediterraneo nel programma.
- Mira, che partecipa alla performance sul Mar Baltico, si esibisce esattamente un giorno dopo la presentazione della fiaba.
- Lunedì sono stati presentati i diari, ma non da Thelma.
- Petra, che ha presentato le poesie, si è concentrata sul Mar Mediterraneo o sul Mar Baltico.
- Il Mar Nero è stato l'argomento di mercoledì.
- I racconti brevi si sono concentrati sul Mar Rosso.
In che giorno si sono esibite le ragazze? Quale mare o tipo di letteratura è stata presentata? 6 punti rossi.
Giorno della settimana Mare Nome della ragazza Tipo di letteratura
Lunedì
Martedì
Mercoledì
Giovedì
Venerdì
https://www.schulmodell.eu/1984-problema-di-matematica-della-settimana.html
Lösung/solution/soluzione/résultat/Решение:
Musterlösung von Dietmar Uschner, danke. --> pdf <--
Aufgabe 2
782. Wertungsaufgabe
deu
„Schaut mal das Parallelogramm an, welches ich in das Koordinatensystem gezeichnet habe. Darin befindet sich der Punkt E (4; 2). Der rote Kreis hat einen Radius von 1 cm.“, sagte Maria.
Wie groß sind die Flächeninhalte der Dreiecke ABE bzw. BCE. 5 blaue Punkte.
(Ganzzahlige Koordinaten von Punkten können in weitere Berechnungen einbezogen werden.) Fünf rote Punkte gibt es für die Berechnung eines neuen Punktes E (x; 2), wenn der Kreis die Seite b des Parallelogramms von innen berührt.
https://www.schulmodell.eu/aufgabe-der-woche.html
Termin der Abgabe 11.04.2024. Limtago por sendi viajn solvojn estas la 11-a de aprilo 2024. Срок сдачи 11.04.2024. Ultimo termine di scadenza per l´invio è il 11.04.2024. Deadline for solution is the 11th. April 2024. Date limite pour la solution 11.04.2024. Soluciones hasta el 11.04.2024. Beadási határidő 2024.04.11. 截止日期: 2024.04.11. – 请用徳语或英语回答 Διορία παράδοσης λύσης 11/04/2024. Παρακαλείστε να υποβάλετε τις λύσεις στα αγγλικά ή στα γερμανικά.
الموعد النهائي للتسليم هو 11/04/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرن
esperanto:
„Rigardu la paralelogramon, kiun mi pentris en la koordinatan sistemon. En ĝi troviĝas la punkto E (4; 2). La ruĝa cirklo havas radiuson de 1 cm.“, diris Maria.
Kiom grandaj estas la areoj de la trianguloj ABE resp. BCE. 5 bluaj poentoj.
(Entjerajn koordinatoj vi povas uzi por plia kalkulado). Kvin ruĝajn poentojn vi ricevos por kalkuli la novan punkton E (x; 2), se la cirklo tuŝas la lateron b de la paralelogramo de interna flanko.
Limtago por sendi viajn solvojn estas la 11-a de aprilo 2024. La solvojn skribu prefere en la germana, angla aŭ franca.
https://www.schulmodell.eu/3155-tasko-de-la-semajno-aufgabe-esperanto.html
arabisch-التمرين الإسبوعي:
في مستوى إحداثي ديكارتي، قمت برسم متوازي الأضلاع ABCD .
الدائرة الحمراء التي مركزها النقطة E(4,2) تقع داخل متوازي الأضلاع.
نصف قطر الدائرة الحمراء يساوي 1 سم.
ما هي مساحة كل من المثلثين AEB و EBC ؟ خمسة نقاط زرقاء.
(يمكن استخدام إحداثيات النقاط المكونة من أرقام صحيحة في الحسابات الإضافية)
إذا كانت الدائرة الحمراء الداخلية تلامس الضلع BC من متوازي الأضلاع ABCD ( الجهة b ) ، ما هي إحداثيات النقطة الجديدة E(x,2) ؟ خمسة نقاط حمراء.
الموعد النهائي للتسليم هو /11/04/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.
https://www.schulmodell.eu/3150-arabisch-التمرين-الإسبوعي.html
griechisch:
"Ρίξτε μια ματιά στο παραλληλόγραμμο που έχω σχεδιάσει στο σύστημα συντεταγμένων. Περιέχει το σημείο E (4; 2). Ο κόκκινος κύκλος έχει ακτίνα 1 cm", είπε η Maria.
Ποια είναι τα εμβαδά των τριγώνων ABE και BCE; 5 μπλε κουκκίδες.
(Οι ακέραιες συντεταγμένες των σημείων μπορούν να συμπεριληφθούν σε περαιτέρω υπολογισμούς). Υπάρχουν πέντε κόκκινα κουκκίδες για τον υπολογισμό ενός νέου σημείου E (x; 2) αν ο κύκλος αγγίζει την πλευρά b του παραλληλογράμμου από το εσωτερικό.
https://www.schulmodell.eu/3126-wochenaufgabe-griechisch.html
chin
第782题
“看看我在坐标系中画的平行四边形。其中点E为(4; 2), 红色圆的半径为1厘米。” 玛丽雅说道。
试求:三角形ABE和三角形BCE面积各是多少。 5个蓝点。
(图中点的整数坐标值可以用于计算)
如果这个圆和平行四边形的边b相切,那么点E(x; 2)就会有新的值。求出新的点E(x; 2)的坐标值。 5个红点。
截止日期: 2024.04.11. – 请用徳语或英语回答
https://www.schulmodell.eu/2952-woch-chin.html
rus
«Посмотрите на параллелограмм, который я нарисовала в системе координат. Там находится точка Е(4;2). Красный круг имеет радиус 1 см», — сказала Мария.
Каковы площади треугольников ABE и BCE? 5 синих очков.
(Целочисленные координаты точек можно включить в дальнейшие расчёты.)
Вы получите пять красных очков для расчёта новой точки E(x;2) если круг касается стороны b параллелограмма изнутри.
hun
"Nézzétek meg a paralelogrammát, amit a koordináta-rendszerbe rajzoltam. Ebben található az E pont (4; 2). A piros kör sugara 1 cm" – mondta Mária.
Mekkora az ABE és BCE háromszögek területe? 5 kék pont.
(A pontok egész számos koordinátái a további számításokban is szerepelhetnek.) Öt piros pont jár egy új E (x; 2) pont kiszámításához, amikor a kör belülről érinti a paralelogramma b oldalát.
https://www.schulmodell.eu/2648-a-h%C3%A9t-feladata.html
frz
« Regardez le parallélogramme que j'ai dessiné dans le système de coordonnées. Le point E (4 ; 2) s'y trouve. Le cercle rouge a un rayon de 1 cm », a expliqué Maria.
Quelles sont les aires des triangles ABE et BCE ? 5 points bleus.
(Les coordonnées entières des points peuvent être incluses dans d'autres calculs.) Il y a cinq points rouges pour calculer un nouveau point E (x; 2) lorsque le cercle touche le côté b du parallélogramme de l'intérieur.
https://www.schulmodell.eu/2201-probleme-de-maths-de-la-semaine.html
esp
"Observa el paralelogramo que he dibujado en el sistema de coordenadas. Contiene el punto E (4; 2). El círculo rojo tiene un radio de 1 cm", dice María.
¿Cuánto miden las áreas de los triángulos ABE y BCE? 5 puntos azules.
(Las coordenadas enteras de los puntos pueden incluirse en los cálculos posteriores). Hay cinco puntos rojos para calcular un nuevo punto E (x; 2) cuando el círculo toca el interior del lado b del paralelogramo.
https://www.schulmodell.eu/2412-ejercicio-de-matem%C3%A1ticas-semanal.html
en
"Take a look at the parallelogram that I have drawn into the coordinate system. It contains the point E (4; 2). The red circle has a radius of 1 cm," said Maria.
What are the areas of the triangles ABE and BCE? 5 blue points.
(Integer coordinates of points can be included in further calculations). There are five red points for the calculation of a new point E (x; 2) if the circle touches the side b of the parallelogram from the inside.
Deadline for solution is the 11th. April 2024.
https://www.schulmodell.eu/1453-this-weeks-maths-problem.html
it
"Guardate il parallelogramma, che ho disegnato nel sistema di coordinate. All'interno si trova il punto E (4; 2). Il cerchio rosso ha un raggio di 1 cm.", disse Maria.
Quali sono le aree dei triangoli ABE e BCE? 5 punti blu. (Le coordinate intere dei punti possono essere incluse in ulteriori calcoli.)
Calcolare un nuovo punto E (x; 2) quando il cerchio tocca il lato b del parallelogramma da dentro. 5 punti rossi
https://www.schulmodell.eu/1984-problema-di-matematica-della-settimana.html
Lösung/solution/soluzione/résultat/Решение:
Musterlösungen von Birgit G. --> pdf <-- und Calvin --> pdf <--, danke.
Aufgabe 3
783. Wertungsaufgabe
deu
Eine Aufgabe von Helmut S., danke
Maria und Bernd haben zwei Tafeln Schokolade bekommen, die sich gut in je 24Stücke teilen lassen.
„Lass uns mal überlegen, wie oft wir die Tafel brechen müssen, bis wir die 24 Stücke alle einzeln haben“, sagte Maria zu Bernd. „Wir sollten als gute Mathematiker aber optimal teilen!“
Gebrochene Stücke übereinander oder aneinander zu legen darf bei der ersten Tafel nicht sein.
Bernd notiert sich ein Beispiel:
Erste Bruchkante senkrecht zwischen 2 und 3
Zweite Bruchkante waagerecht zwischen 7 und 13
Bernd hat jetzt drei quadratische Stücke erhalten.
Dritte Bruchkante senkrecht zwischen 4 und 5.
Viertes und fünftes Brechen, so dass 6 gleiche kleine Quadrate mit je 4 Stück Schokolade entstehen. Aus den kleinen Quadraten kann man die Einzelstücke mit je 3 Brüchen erhalten. Bernd hat also 1+1+ 1 +1 +1 +6*3 = 23 Teilungen gebraucht.
Das geht sicher besser, oder? Wie kommt man denn mit weniger Brechen aus? Für das Finden eines Weges mit weniger als 23 Brechungen oder dem Zeigen, dass es immer 23 sein müssen, gibt es 4 blaue Punkte.
Bei der zweiten Tafel ist übereinander und aneinander legen erlaubt. Als Hilfe zum Brechen verwendet Bernd ein heißes und sehr scharfes Messer.
Mit wie vielen Teilungen kommt man bei dieser Art aus? Für das Finden einer möglichst kleinen Anzahl von Teilungen gibt es 4 rote Punkte.
https://www.schulmodell.eu/aufgabe-der-woche.html
Termin der Abgabe 18.04.2024. Limtago por sendi viajn solvojn estas la 18-a de aprilo 2024. Срок сдачи 18.04.2024. Ultimo termine di scadenza per l´invio è il 18.04.2024. Deadline for solution is the 18th. April 2024. Date limite pour la solution 18.04.2024. Las soluciones deben ser enviadas hasta el 18.04.2024. Beadási határidő 2024.04.18. 截止日期: 2024.04.18. – 请用徳语或英语回答 Διορία παράδοσης λύσης 18/04/2024. Παρακαλείστε να υποβάλετε τις λύσεις στα αγγλικά ή στα γερμανικά.
الموعد النهائي للتسليم هو 18/04/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرن
esperanto:
Tui ĉi tasko estas de Helmut S., dankon
Maria kaj Bernd ricevis du tabuletojn da ĉokolado, kiuj estas bone dispartigebaj ĉiu en 24 pecoj.
„Lasu ein iom cerbumi kiom ofte oni devas rompi la tabuleton ĝis ni havas 24 pecetojn“, diris Maria al Bernd. „Ĉar ni estas bonaj matematikistoj, ni volas optimale dispartigi la tabuleton!“
Por la unua tabuleto oni ne rajtas meti rompitajn pecojn unu sur (aŭ apud) la alian por kune rompi ilin denove.
Bernd notas ekzemplon:
La unua rompado laŭ vertikala linio inter 2 kaj 3. La dua rompado horizontale inter 7 kaj 13. Nun Bernd havas tri kvadratajn pecojn.
La tria rompado vertikale inter 4 kaj 5. La kvara kaj kvina rompadoj tiel ke estiĝos 6 samaj malgrandaj kvadratoj (ĉiu kun 4 pecetoj). El ĉiu malgranda kvadrato oni ricevas la pecetojn per 3 rompadoj. Bernd do 1+1+ 1 +1 +1 +6*3 = 23-foje rompis la tabuleton.
Tio certe povus okazi pli efektive, ĉu ne? Kiel oni povas atingi la cólon per malpli ol 23 rompadoj? Por trovi solvon kun malpli da rompadoj aŭ por argumentado ke ĉiam estu 23 rompadoj vi ricevos 4 bluajn poentojn.
Por la dua tabuleto oni rajtas meti la rompitajn pecojn unu sur/apud la aliajn por kune rompi ilin. Kiel helpilon por dispartigi la pecojn Bernd uzas varmegan kaj akran tranĉilon.
Kiom multajn dispartigojn oni bezonas por la dua tabuleto? Por trovi la plej malgrandan nombron de partigadoj vi ricevos 4 ruĝajn poentojn.
Limtago por sendi viajn solvojn estas la 18-a de aprilo 2024. La solvojn skribu prefere en la germana, angla aŭ franca.
https://www.schulmodell.eu/3155-tasko-de-la-semajno-aufgabe-esperanto.html
arabisch-التمرين الإسبوعي:
لدى ماريا وبرند لوحين من الشوكولا التي يمكن تقسيم كل منها إلى 24 قطعة.
قالت ماريا لبرند: " دعنا نفكر كم مرة يجب علينا كسر لوح الشوكولا حتى نحصل على الـ 24 قطعة المكونة للوح الشوكولا بشكل منفصل.
يجب أن نقسم الوح بشكل احترافي كما يفعل الرياضيون الجيدون! ".
عند تقسيم لوح الشوكولا الأول لا يسمح بوضع القطع المقسمة فوق بعضها البعض أو بوضعها جنبًا إلى جنب.
على سبيل المثال:
يمكننا تقسيم الوح الأول على الشكل التالي:
الخطوة الأولى: كسر الوح الأول بشكل عمودي بين القطعتين 2 و3.
الخطوة الثانية: كسر الوح الأول بشكل أفقي بين القطعتين رقم 7 و13.
وبذلك نكون قد حصلنا على ثلاثة أقسام (قطع) مربعة.
الخطوة الثالثة: كسر الوح الأول بشكل عمودي بين القطعتين رقم 4 و5.
بعد تنفيذ الخطوة الرابعة والخامسة سنحصل على 6 أقسام (قطع) مربعة متماثلة، كل منها يحتوي على 4 قطع من الشوكولا.
للحصول على 24 قطعة شوكولا، يتوجب علينا تقسيم كل قسم (قطعة) مربعة من القطع الستة التي حصلنا عليها بالخطوة الرابعة و الخامسة ثلاثة مرات.
و بذلك نحن بحاجة إلى 23 خطوة لتقسيم الوح الأول إلى القطع المكونة منه.
كيف يمكننا الحصول على 24 قطعة التي تشكل الوح الأول بأقل عدد ممكن من الخطوات ؟
هناك 4 نقاط زرقاء لإيجاد طريقة لتقسيم اللوح الأول بأقل من 23 خطوة أو لإثبات أنه لا يمكننا تقسيم اللوح الأول إلا بـ 23 خطوة .
عند تقسيم لوح الشوكولا الثاني يسمح بوضع القطع المقسمة فوق بعضها البعض أو بوضعها جنبًا إلى جنب. كما أنه يسمح باستخدام سكين ساخنة وحادة جدًا كمساعد للكسر.
ما هو أقل عدد ممكن من الخطوات التي يتوجب علينا القيام بها حتى نحصل على 24 قطعة من الشوكولا المكونة للوح الثاني ؟ 4 نقاط حمراء
الموعد النهائي للتسليم هو /18/04/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.
https://www.schulmodell.eu/3150-arabisch-التمرين-الإسبوعي.html
griechisch:
Μια εργασία από τον Helmut S., σας ευχαριστώ
Στη Maria και τον Bernd δόθηκαν δύο πλάκες σοκολάτας που μπορούν εύκολα να χωριστούν σε 24 κομμάτια η καθεμία.
"Ας υπολογίσουμε πόσες φορές πρέπει να σπάσουμε τη μπάρα μέχρι να έχουμε και τα 24 κομμάτια ξεχωριστά", είπε η Maria στον Bernd. "Αλλά ως καλοί μαθηματικοί, θα πρέπει να τη χωρίσουμε τέλεια!"
Τα σπασμένα κομμάτια δεν πρέπει να τοποθετηθούν το ένα πάνω στο άλλο ή το ένα δίπλα στο άλλο στον πρώτο πίνακα.
Ο Bernd σημειώνει ένα παράδειγμα:
Πρώτη κλασματική άκρη κάθετα μεταξύ 2 και 3.
Δεύτερη σπασμένη ακμή οριζόντια μεταξύ 7 και 13
Ο Bernd έχει τώρα τρία τετράγωνα κομμάτια.
Τρίτο σπασμένο άκρο κάθετα μεταξύ 4 και 5.
Σπάστε την τέταρτη και την πέμπτη ακμή για να φτιάξετε 6 ίσα μικρά τετράγωνα με 4 κομμάτια σοκολάτας το καθένα. Από τα μικρά τετράγωνα μπορείτε να λάβετε τα μεμονωμένα κομμάτια με 3 κλάσματα το καθένα. Επομένως, ο Bernd χρειάστηκε 1+1+ 1 +1 +1 +1 +1 +1 +1 +6*3 = 23 διαιρέσεις.
Σίγουρα αυτό είναι καλύτερο, σωστά; Πώς τα καταφέρνετε με λιγότερα κλάσματα; Υπάρχουν 4 μπλε πόντοι για να βρείτε μια διαδρομή με λιγότερα από 23 κλάσματα ή να δείξετε ότι πρέπει να υπάρχουν πάντα 23.
Στον δεύτερο πίνακα, επιτρέπονται οι επικαλύψεις και οι γειτονικές γραμμές. Ο Bernd χρησιμοποιεί ένα καυτό και πολύ κοφτερό μαχαίρι για να βοηθήσει με το σπάσιμο.
Πόσες διαιρέσεις μπορείτε να ξεφύγετε με αυτόν τον τρόπο; Υπάρχουν 4 κόκκινοι πόντοι για την εύρεση του μικρότερου δυνατού αριθμού διαιρέσεων.
https://www.schulmodell.eu/3126-wochenaufgabe-griechisch.html
chin
第783题
来自于Helmut的一道题, 在此表示感谢!
玛丽雅和伯恩德得到了两块巧克力,每块巧克力都正好分成了24小块。
“让我们考虑一下,我们需要折断巧克力多少次,才能将这24小块全部分开。” 玛丽雅对伯恩德说道。
“作为优秀的数学学习者,我们应该最优化的分割!”
折断和互相堆叠在一起的情况不能在第一块巧克力上出现。
伯恩德记录第一个例子:
第一次折断:在2和3之间竖向折断
第二次折断:在7和13之间横向折断
现在伯恩德得到了三个正方形的块。
第三次折断:在4和5之间竖向折断
第四次和第五次折断后,得到了6个相同的小正方形,每个正方形均有4小块巧克力。小正方形可以再通过折断3次而得到单个块。所以伯恩德一共需要 1+1+ 1 +1 +1 +6*3 = 23次来掰开这块巧克力。
肯定还有更好的办法,对吗?怎样才能用更少的分割次数呢?
找到少于23次折断的方法或证明至少需要23次分割,可以得到4个蓝色点。
在第二块巧克力上,允许出现部分堆叠在一起的情况。伯恩德使用了一把比较热的而且非常锋利的刀片作为辅助来进行切割。
用这种方法,多少次可以切割完成?找到尽可能最少的切割次数可得4个红点。
截止日期: 2024.04.18. – 请用徳语或英语回答
https://www.schulmodell.eu/2952-woch-chin.html
rus
Задача от Хельмута С., спасибо
Мария и Бернд получили две плитки шоколада, каждую из которых легко разделить на 24 кусочка.
«Давайте подумаем, сколько раз нам придётся разбить плитку, чтобы собрать все 24 кусочка по отдельности», — сказала Мария Бернду. «А как хорошие математики, мы должны делить оптимально!»
На первой плитке не допускается размещение сломанных частей друг на друга или рядом.
Бернд приводит пример:
Первая линия разрыва по вертикали между 2 и 3
Вторая линия разрыва по горизонтали между 7 и 13.
Бернд теперь получил три квадрата.
Третий излом по вертикали между 4 и 5.
Разломите четвёртый и пятый раз, чтобы получилось 6 одинаковых маленьких квадратов по 4 кусочка шоколада в каждом. Из маленьких квадратов можно получить отдельные кусочки по 3 излома в каждом. Итак, Бернду понадобилось 1+1+1+1+1+6*3 = 23 разделения.
Определённо есть лучший способ, верно? Как обойтись меньшим количеством разделений? За нахождение пути с менее чем 23 разделениями или показ того, что их всегда должно быть 23, вы получите 4 синих очков.
При второй плитке допускается располагать части поверх и рядом друг с другом. Чтобы сломать его, Бернд использует горячий и очень острый нож.
Сколькими разделениями можно обойтись этим подходом? 4 красных очков для нахождения наименьшего количества делений.
https://www.schulmodell.eu/2910-%D0%B7%D0%B0%D0%B4%D0%B0%D1%87%D0%B0-%D0%BD%D0%B5%D0%B4%D0%B5%D0%BB%D0%B8-mathematics.html
hun
Mária és Bernd két tábla csokoládét kaptak, amelyek könnyen feloszthatók 24 darabra.
"Gondoljunk bele, hányszor kell eltörnünk a táblát, amíg mind a 24 darab külön-külön megvan" – mondta Mária Berndnek. "Jó matematikusokként azonban optimálisan kell felosztanunk!"
A törött darabokat nem szabad egymásra vagy egymás mellé helyezni az első táblánál.
Bernd leír egy példát:
Az első törésvonal merőleges 2 és 3 között
Második törésvonal vízszintesen 7 és 13 között
Bernd most három négyzet alakú darabot kapott.
Harmadik törésvonal merőleges 4 és 5 között.
Negyedik és ötödik törés, így 6 egyenlő kis négyzet alakul ki, mindegyik 4 darab csokoládéval. A kis négyzetekből az egyes darabokat 3 töréssel kaphatja meg. Berndnek tehát 1+1+ 1 +1 +1 +6*3 = 23 törésre volt szüksége.
Van jobb módszer, igaz? Hogyan boldogulsz kevesebb töréssel? A 23-nál kevesebb töréssel rendelkező útvonal megtalálásához vagy annak bemutatásához, hogy mindig 23-nak kell lennie, 4 kék pont jár.
A második tábla esetében megengedett, hogy a darabok egymás tetejére és egymás mellé fektetése. A törés elősegítésére Bernd forró és nagyon éles kést használ.
Hány törésre van szükség ebben az esetben? 4 piros pont jár a lehető legkisebb számú felosztás megtalálásához.
https://www.schulmodell.eu/2648-a-h%C3%A9t-feladata.html
frz
Un exercice de la part de de Helmut S., merci
Maria et Bernd ont reçu deux tablettes de chocolat qui peuvent facilement être divisées en 24 morceaux chacune.
"Réfléchissons au nombre de fois que nous devrons casser la tablette jusqu'à ce que nous ayons les 24 pièces individuellement", a déclaré Maria à Bernd. « En tant que bons mathématiciens, nous devrions diviser de manière optimale ! »
Placer des pièces cassées les unes sur les autres ou les unes à côté des autres n'est pas autorisé sur la première barre.
Bernd note un exemple :
Première ligne de cassure verticale entre 2 et 3
Deuxième ligne de cassure horizontale entre 7 et 13
Bernd a maintenant trois pièces carrées.
Troisième ligne de cassure verticalement entre 4 et 5.
Casser le quatrième et le cinquième pour créer 6 petits carrés égaux avec 4 morceaux de chocolat chacun. À partir des petits carrés, on peut obtenir des pièces individuelles comportant chacune 3 fractions. Bernd avait donc besoin de 1+1+ 1 +1 +1 +6*3 = 23 divisions.
Il existe certainement une meilleure façon, non ? Comment s’en sortir avec moins de cassures ? Pour trouver un chemin avec moins de 23 cassures ou pour montrer qu'il doit toujours y en avoir 23, il y aura 4 points bleus.
La deuxième tablette peut être placé l'un sur l'autre et l'un à côté de l'autre. Pour l'aider à la briser, Bernd utilise un couteau chaud et très tranchant.
Combien de divisions peut-on faire comme ça ? Il y aura 4 points rouges pour trouver le plus petit nombre de divisions possible ?
https://www.schulmodell.eu/2201-probleme-de-maths-de-la-semaine.html
esp
María y Bernd han recibido dos barras de chocolate, las cuales pueden dividir fácilmente en 24 unidades.
María le dice a Bernd "Piensa cuántas veces tenemos que dividir el tablero hasta que tengamos las 24 unidades" "Pero como buenos matemáticos, ¡deberíamos dividirlo perfectamente!".
Las piezas rotas no puedes colocarse una encima de otra o una al lado de la otra.
Bernd escribe un ejemplo:
La primera división la hace verticalmente entre 2 y 3
La segunda división la realiza horizontalmente entre 7 y 13
Bernd tiene ahora tres piezas cuadradas.
La tercera divisón la hace verticalmente entre 4 y 5
Cuarta y quinta división las realiza, de forma que se crean 6 cuadraditos iguales con 4 pedazos de chocolate cada uno. De los cuadrados pequeños se obtienen los trozos iguales, cada uno con 3 secciones/fragmentos. Por lo tanto, Bernd necesitó 1+1+ 1 +1 +1 +1 +6*3 = 23 divisiones.
Seguro que se puede hacer mejor, ¿no crees? ¿Cómo te las arreglas con menos rupturas?
Para conseguir un camino con menos de 23 rupturas o indicar que tienen que ser menos de 23, existen 4 puntos azules.
Con la segunda barra, pueden colocarse las piezas encima y una al lado de la otra. Bernd utiliza un cuchillo caliente y muy afilado para ayudar a romper las barras de chocolate.
¿Cuántas divisiones requiere este método? Existe para encontrar el menor núnmero de divisiones posibles, 4 puntos rojos?
https://www.schulmodell.eu/2412-ejercicio-de-matem%C3%A1ticas-semanal.html
en
Maria and Bernd have been given two bars of chocolate, which can easily be divided into 24 pieces each.
"Let's work out how many times we have to break the bar until we have all 24 pieces individually," said Maria to Bernd. "But as good mathematicians, we should divide it perfectly!"
Broken pieces must not be placed on top of each other or next to each other on the first board.
Bernd notes an example:
First broken edge vertically between 2 and 3
Second broken edge horizontally between 7 and 13
Bernd now has three square pieces.
Third break edge vertical between 4 and 5.
Break the fourth and fifth edges to make 6 equal small squares with 4 pieces of chocolate each. From the small squares you can obtain the individual pieces with 3 fractions each. Bernd therefore needed 1+1+ 1 +1 +1 +1 +6*3 = 23 divisions.
Surely that's better, right? How do you get by with fewer fractions? There are 4 blue points for finding a path with fewer than 23 fractions or showing that there must always be 23.
On the second board, overlapping and adjacent lines are allowed. Bernd uses a hot and very sharp knife to help with the breaking.
How many divisions can you manage with this type? Do you get 4 red points for finding the smallest possible number of divisions?
Deadline for solution is the 18th. April 2024.
https://www.schulmodell.eu/1453-this-weeks-maths-problem.html
it
Un esercizio di Helmut S., grazie
Maria e Bernd hanno ricevuto due tavolette di cioccolato, ciascuna delle quali può essere divisa facilmente in 24 pezzi.
"Proviamo a pensare a quante volte dobbiamo rompere la tavoletta finché non abbiamo tutti e 24 i pezzi singoli", disse Maria a Bernd. "Dovremmo dividerla in modo ottimale come bravi matematici!"
Unire o sovrapporre pezzi spezzati non è consentito con la prima tavoletta.
Bernd prende appunti con un esempio:
Primo taglio verticale tra 2 e 3
Secondo taglio orizzontale tra 7 e 13
Bernd ora ha ottenuto tre quadrati.
Terzo taglio verticale tra 4 e 5.
Quarto e quinto taglio, in modo che siano formati 6 piccoli quadrati con 4 pezzi di cioccolato ciascuno. Dai piccoli quadrati è possibile ottenere i pezzi singoli con 3 tagli ciascuno. Quindi Bernd ha impiegato 1 + 1 + 1 + 1 + 1 + 6 * 3 = 23 divisioni.
Sicuramente c'è un modo migliore, giusto? Come si fa a fare meno divisioni? Per trovare un modo con meno di 23 divisioni o dimostrare che ne devono essere sempre 23, ci sono 4 punti blu.
Con la seconda tavoletta è consentito sovrapporre e unire i pezzi. Per aiutarsi a spezzare, Bernd utilizza un coltello caldo e molto affilato.
Quante divisioni si ottengono con questo metodo? Per trovare il numero più piccolo possibile di divisioni ci sono 4 punti rossi.
https://www.schulmodell.eu/1984-problema-di-matematica-della-settimana.html
x
Lösung/solution/soluzione/résultat/Решение:
Musterlösung von hirvi, vielen Dank. --> pdf <--
Anmerkung, die blaue Lösung ist etwas knapp, aber ja.
Aufgabe 4
784. Wertungsaufgabe
deu
„Lass mich raten. Das Viereck ABCD ist ein gleichschenkliges Trapez und das blaue Dreieck ist unser Lieblingsdreieck (3-4-5- rechtwinklig).“, sagte Bernd zu seiner Schwester. „Das stimmt genau. Die Punkte E, F, G und H sind jeweils die Mittelpunkte der Seiten des Trapezes. Die Punkte I und J sind die Mittelpunkte der Diagonalen des Trapezes.“, antwortete Maria.
Die Seite c ist 12 cm lang.
Wie weit ist der Punkt I von J entfernt? Wer die Aufgabe konstruktiv löst, erhält 4 blaue Punkte. Für eine rechnerische Lösung gibt es alternativ 8 blaue Punkte.
In dem obigen Bild sieht man, dass K – Schnittpunkt der Verbindungslinien der Mittelpunkte – die Strecke IJ halbiert. Kann es sein, dass diese Eigenschaft von K in jedem konvexen Viereck ABCD gilt? 8 rote Punkte.
https://www.schulmodell.eu/aufgabe-der-woche.html
Termin der Abgabe 25.04.2024. Limtago por sendi viajn solvojn estas la 25-a de aprilo 2024. Срок сдачи 25.04.2024. Ultimo termine di scadenza per l´invio è il 25.04.2024. Deadline for solution is the 25th. April 2024. Date limite pour la solution 25.04.2024. Las soluciones deben ser enviadas hasta el 25.04.2024. Beadási határidő 2024.04.25. 截止日期: 2024.04.25. – 请用徳语或英语回答 Διορία παράδοσης λύσης 25/04/2024. Παρακαλείστε να υποβάλετε τις λύσεις στα αγγλικά ή στα γερμανικά.
الموعد النهائي للتسليم هو 25/04/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرن
esperanto:
„Lasu min diveni. La kvarlatero ABCD estas izocela trapezo kaj la blua triangulo estas nia plej ŝatata (3-4-5-rektangula).“, diris Bernd al sia fratino. „Tio ĝustas akurate. La punktoj E, F, G kaj H estas la mezpunktoj de la lateroj de la trapezo. La punktoj I kaj J estas la mezpunktoj de la diagonaloj de la trapezo.“, respondis Maria. La latero c estas 12 cm longa.
Kiom granda estas la distanco inter I kaj J?“ Por solvo per konstruado vi ricevos 4 bluajn poentojn. Por solvo per kalkulado vi ricevos 8 bluajn poentojn.
En la supra bildo oni vidas ke K — la punkto kie la linioj inter la mezpunktoj sekcas unu la alian — duonigas la linion IJ. Ĉu povas esti ke tiun econ K havas en ĉiu konveksa kvarlatero? 8 ruĝaj poentoj
Limtago por sendi viajn solvojn estas la 25-a de aprilo 2024. La solvojn skribu prefere en la germana, angla aŭ franca.
https://www.schulmodell.eu/3155-tasko-de-la-semajno-aufgabe-esperanto.html
arabisch-التمرين الإسبوعي:
قال بيرند لأخته: "دعني أخمن، إن الشكل الرباعي ABCD هو شبه منحرف متساوي الساقين والمثلث الأزرق هو مثلث فيثاغورث القائم الزاوية (3-4-5) "
أجابت ماريا: " تماماً ، هذا صحيح. النقاط E و F و G و H هي منصفات أضلاع شبه المنحرف. النقطتان I و J تقعان في منتصف قطري شبه المنحرف AC و BD على التوالي."
طول الضلع DC=c=12 cm
كم تبعد النقطة I عن النقطة J ؟
4 نقاط زرقاء في حال تم تسليم حل بناء.
8 نقاط زرقاء في حال تم تسليم حل حسابي
في الصورة أعلاه، يمكنك أن ترى أن النقطة K هي نقطة تقاطع الخطين الواصلين بين منصفات كل ضلعين متقابلين في شبه المنحرف ABCD . النقطة K تقع في منتصف القطعة المستقيمة JI .
هل من الممكن أن تنطبق هذه الخاصية المتعلقة بالنقطة K على كل شكل رباعي محدب ABCD؟ 8 نقاط حمراء.
الموعد النهائي للتسليم هو /25/04/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.
https://www.schulmodell.eu/3150-arabisch-التمرين-الإسبوعي.html
griechisch:
"Αφήστε με να μαντέψω. Το τετράπλευρο ABCD είναι ένα ισοσκελές τραπέζιο και το μπλε τρίγωνο είναι το αγαπημένο μας τρίγωνο (3-4-5- ορθογώνιο)", είπε ο Bernd στην αδελφή του. "Αυτό είναι ακριβώς σωστό. Τα σημεία E, F, G και H είναι τα κέντρα των πλευρών του τραπεζοειδούς. Τα σημεία I και J είναι τα κέντρα των διαγωνίων του τραπεζοειδούς", απάντησε η Maria.
Η πλευρά γ έχει μήκος 12 εκατοστά.
Πόσο απέχει το σημείο Ι από το J; Αν λύσετε το πρόβλημα εποικοδομητικά, θα πάρετε 4 μπλε κουκκίδες. Για μια μαθηματική λύση, υπάρχουν εναλλακτικά 8 μπλε κουκκίδες.
Στην παραπάνω εικόνα μπορείτε να δείτε ότι το Κ - τομή των συνδετικών γραμμών των κεντρικών σημείων - διχοτομεί την απόσταση ΙJ. Είναι δυνατόν αυτή η ιδιότητα του Κ να ισχύει σε κάθε κυρτό τετράπλευρο ABCD; 8 κόκκινες κουκκίδες.
https://www.schulmodell.eu/3126-wochenaufgabe-griechisch.html
chin
第784题
“让我猜一下哈, 这个四边形ABCD是一个等腰梯形,蓝色的三角形是我们喜欢的三角形,即3-4-5-直角三角形。” 贝恩德对他的妹妹说道。
“全对!另外点E、F、G和点H分别是梯形各边的中点, 点I和J是梯形对角线的中点。” 玛丽雅继续解释道。
边c的长度为12厘米。
那么从点I到点J的距离是多少?通过构建图来解决问题的话可以获得4个蓝点; 使用计算而得到答案的会得到8个蓝点。
在图中看到的点K是梯形两条中线的交点,且把线段IJ分成两等份。那么点K在每个凸四边形ABCD中都有这样的特性吗? 8个红点。
截止日期: 2024.04.25. 请用徳语或英语回答
https://www.schulmodell.eu/2952-woch-chin.html
rus
«Дай угадаю. Квадрат ABCD — равнобедренная трапеция, а синий треугольник — наш любимый треугольник (3-4-5 — прямоугольный)», — сказал Бернд сестре. «Это совершенно верно. Точки E, F, G и H являются серединами сторон трапеции соответственно. Точки I и J — центры диагоналей трапеции», — ответила Мария.
Сторона c имеет длину 12 см.
На каком расстоянии точка I от J? Кто решит задачу конструктивно, получит 4 синих очка. Альтернативно, для математического решения получат 8 синих очков.
На рисунке выше вы можете видеть, что K — точка пересечения линий, соединяющих центры сторон, — делит отрезок IJ пополам. Может ли это свойство K иметь место в каждом выпуклом четырёхугольнике ABCD? 8 красных очков.
hun
- Hadd találgassak. Az ABCD négyszög egy egyenlő szárú trapéz, a kék háromszög pedig a kedvenc háromszögünk (3-4-5 derékszögű)" – mondta Bernd a nővérének. "Pontosan így van. Az E, F, G és H pontok a trapéz oldalainak középpontjai. Az I és J pontok a trapéz átlóinak középpontjai - válaszolta Mária.
A c oldal 12 cm hosszú.
Milyen messze van az I pont J-től? A feladat konstruktív megoldásáért 4 kék pont jár. A matematikai, számolásos megoldás alternatívaként 8 kék pontot ér.
A fenti képen látható, hogy K – a középpontok összekötő vonalainak metszéspontja – felezi az IJ távolságot. Lehetséges, hogy K ezen tulajdonsága minden konvex négyszög ABCD-ben fennáll? 8 piros pont.
https://www.schulmodell.eu/2648-a-h%C3%A9t-feladata.html
frz
"Laisse-moi deviner. Le carré ABCD est un trapèze isocèle et le triangle bleu est notre triangle préféré (3-4-5-angle droit)", dit Bernd à sa sœur. « C’est exactement ça. Les points E, F, G et H sont respectivement les milieux des côtés du trapèze. Les points I et J sont les centres des diagonales du trapèze », répondit Maria.
Le côté c mesure 12 cm de long.
À quelle distance se trouve le point I du point J? Celui qui résout l’exercice de manière constructive reçoit 4 points bleus. Alternativement, il y a 8 points bleus pour une solution mathématique.
Dans l’image ci-dessus, on peut voir que K – l’intersection des lignes reliant les centres – divise la distance IJ en deux. Se peut-il que cette propriété de K soit vraie dans tout quadrilatère convexe ABCD ? 8 points rouges.
https://www.schulmodell.eu/2201-probleme-de-maths-de-la-semaine.html
esp
"Déjame adivinar. El cuadrado ABCD es un trapecio isósceles y el triángulo azul es nuestro triángulo favorito (3-4-5-ángulo rectángulo)", dijo Bernd a su hermana. "Exactamente. Los puntos E, F, G y H son los puntos céntricos de los lados del trapecio. Los puntos I y J son los centros de las diagonales del trapecio", responde María.
El lado C tiene 12 cm de longitud.
¿A que distancia está el punto I de J? Si resuelves el problema de forma constructiva, obtienes 4 puntos azules. Por una solución matemática/númerica se ofrece opcional 8 puntos azules.
En la ilustración superior puedes ver que K - intersección de las líneas que unen puntos centrales – reduce a la mitad la distancia de IJ. ¿Es posbile que esta singularidad de K se aplique en cada uno de los cuadriláteros convexos ABCD? 8 puntos rojos.
https://www.schulmodell.eu/2412-ejercicio-de-matem%C3%A1ticas-semanal.html
en
"Let me guess. The quadrilateral ABCD is an isosceles trapezoid and the blue triangle is our favourite triangle (3-4-5- right-angled)," said Bernd to his sister. "That's exactly right. Points E, F, G and H are the centres of the sides of the trapezoid. Points I and J are the centres of the diagonals of the trapezoid," replied Maria.
Side c is 12 cm long.
How far is point I from J? If you solve the problem constructively, you get 4 blue points. Alternatively, an arithmetical solution scores 8 blue points. In the picture above you can see that K - intersection of the connecting lines of the centres – cuts in half the distance IJ. Is it possible that this feature of K applies in every convex quadrilateral ABCD? 8 red points.
Deadline for solution is the 25th. April 2024.
https://www.schulmodell.eu/1453-this-weeks-maths-problem.html
it
"Fammi indovinare. Il quadrilatero ABCD è un trapezio isoscele e il triangolo blu è il nostro triangolo preferito (3-4-5 rettangolo)", disse Bernd a sua sorella. "Esattamente. I punti E, F, G e H sono rispettivamente i punti medi dei lati del trapezio. I punti I e J sono i punti medi delle diagonali del trapezio", rispose Maria. Il lato c è lungo 12 cm. Quanto è lontano il punto I dal punto J? Chi risolve il problema in modo costruttivo riceverà 4 punti blu. Per una soluzione calcolata, ci sono alternative 8 punti blu. Nell'immagine sopra si vede che K - il punto di intersezione delle linee congiungenti i punti medi - dimezza il segmento IJ. Può essere che questa proprietà di K valga per ogni quadrilatero convesso ABCD? 8 punti rossi.
https://www.schulmodell.eu/1984-problema-di-matematica-della-settimana.html
Lösung/solution/soluzione/résultat/Решение:
Musterlösung von G. Palme, vielen Dank. --> pdf <--
Aufgabe 5
785. Wertungsaufgabe
deu
„Das sieht aber gut aus.“, sagte Bernd zu seiner Schwester. „Ja, das gefällt mir auch. Ich habe ein kleines gleichseitiges Dreieck ABC (a = 1 cm) gezeichnet. Dann habe ich überlegt, welche gleichgroßen, regelmäßigen n-Ecke das Dreieck vollständig umschließen können, so dass die n-Ecke (rot) sich an jeweils einer Kante berühren. So habe ich dann die drei Zwölfecke konstruiert.“ „Toll.“
Wie groß ist der Umfang des 27-Ecks? 2 blaue Punkte. Wie groß ist der Flächeninhalt der Figur? 4 blaue Punkte
Welche regelmäßigen n-Ecke gibt es noch, die sich durch einen „Ring“ von regelmäßigen n-Ecken - wie bei der blauen Aufgabe - umschließen lassen? 6 rote Punkte.
https://www.schulmodell.eu/aufgabe-der-woche.html
Termin der Abgabe 02.05.2024. La limtago por sendi viajn solvojn estas la 2-a de majo 2024. Срок сдачи 02.05.2024. Ultimo termine di scadenza per l´invio è il 02.05.2024. Deadline for solution is the 2th. May 2024. Date limite pour la solution 02.05.2024. Las soluciones deben ser enviadas hasta el 02.05.2024. Beadási határidő 2024.05.02. 截止日期: 2024.05.02 – 请用徳语或英语回答 Διορία παράδοσης λύσης 02/05/2024. Παρακαλείστε να υποβάλετε τις λύσεις στα αγγλικά ή στα γερμανικά.
الموعد النهائي للتسليم هو 02/05/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرن
esperanto:
„Tio bele aspektas.“, diris Bernd al sia fratino. „Jes, ankaŭ al mi tio plaĉas. Mi pentris malgrandan egallateran triangulon ABC (a = 1 cm). Poste mi pripensis, kiuj samgrandaj regulaj n-lateroj povus esti ĉirkaŭ la triangulo tiel ke la n-lateroj (ruĝaj) tuŝas unu la alian je komuna latero. Tiel mi konstruis la tri 12-laterojn.“
Kiom longa estas la rando de la 27-latero? 2 bluaj poentoj. Kiom granda estas la areo de la figuro? 4 bluaj poentoj
Kiuj regulaj n-lateroj ankaŭ ekzistas, kiujn oni povas ĉirkaŭi per ringo de regulaj n-lateroj — simile al la supra tasko? 6 ruĝaj poentoj.
La limtago por sendi viajn solvojn estas la 2-a de majo 2024. La solvojn skribu prefere en la germana, angla aŭ franca.
https://www.schulmodell.eu/3155-tasko-de-la-semajno-aufgabe-esperanto.html
arabisch-التمرين الإسبوعي:
قال بيرند لأخته : " يبدو ذلك جيدًا جدًا"
"نعم، إنه يعجبني أيضاً. لقد رسمت مثلثاً متساوي الأضلاع صغيراً ABC (a=1cm) ، ثم حاولت البحث عن شكل هندسي منتظم يكون جميع أضلاعه ذات طول متساوٍ وجميع زواياه ذات قياس واحد، بحيث يحيط هذا الشكل الهندسي بالمثلث من جميع أضلاعه بشكل كامل.
لذلك قمت برسم ثلاثة مضلعات (كل مضلع هو مضلع اثني عشر ضلعاً منتظماً ). كل مضلع له اثنا عشر ضلعاً واثنتا عشرة زاوية."
ما هو محيط الشكل الهندسي المُكون من 27 ضلعاً ؟ 2 نقطة زرقاء.
ما هي مساحة الشكل الهندسي المُكون من 27 ضلعاً ؟ 4 نقاط زرقاء.
ما هو الشكل الهندسي المنتظم الذي تكون جميع أضلاعه متساوية الطول، وجميع زواياه ذات قياس واحد، والذي يحقق الخاصية التالية:
إذا رُسم في المركز، فإنه يمكن رسم عند كل ضلع من أضلاعه أشكال هندسية مشابه له بحيث تحيط به (الشكل المركزي) بشكل كامل؟ 6 نقاط حمراء.
الموعد النهائي للتسليم هو /02/05/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.
https://www.schulmodell.eu/3150-arabisch-التمرين-الإسبوعي.html
griechisch:
"Αυτό φαίνεται καλό", είπε ο Bernd στην αδελφή του. "Ναι, κι εμένα μου αρέσει. Σχεδίασα ένα μικρό ισόπλευρο τρίγωνο ABC (α = 1 cm). Στη συνέχεια σκέφτηκα ποιες κανονικές n κορυφές του ίδιου μεγέθους θα μπορούσαν να περικλείουν πλήρως το τρίγωνο έτσι ώστε οι n κορυφές (κόκκινες) να αγγίζουν η καθεμία από μία ακμή. Έτσι κατασκεύασα τα τρία δωδεκάγωνα". Υπέροχα."
Ποια είναι η περίμετρος της γωνίας 27; 2 μπλε κουκκίδες. Ποιο είναι το εμβαδόν του σχήματος; 4 μπλε κουκκίδες.
Ποιες άλλες κανονικές n-γωνίες υπάρχουν που μπορούν να περικλείονται από έναν "δακτύλιο" κανονικών n-γωνιών - όπως στην άσκηση με μπλε χρώμα; 6 κόκκινες κουκκίδες.
https://www.schulmodell.eu/3126-wochenaufgabe-griechisch.html
chin
第785题
"这个看起来不错。" 伯恩德对他的妹妹说道。
“是的,我也很喜欢。我先画了一个小的等边三角形ABC,其中边a = 1厘米。然后我考虑用大小相同的正n边形把这个三角形圈起来,而且红色的正n边形之间要互相接触。按照这个规则我构建了三个十二边形。”
“真是太棒了!”
这个27边形的周长是多少? 2个蓝点
这个图形的面积是多少? 4个蓝点
还有哪些正n边形,可以通过“环”的形式被一圈儿正n边形包围起来? 就像蓝色问题中那样。 6个红点。
截止日期: 2024.05.02. – 请用徳语或英语回答
https://www.schulmodell.eu/2952-woch-chin.html
rus
«Выглядит неплохо», — сказал Бернд сестре. «Да, мне это тоже нравится. Я нарисовала маленький равносторонний треугольник АВС (а = 1 см). Затем я задумалась о том, какие правильные n-угольники одинакового размера могли бы полностью окружить треугольник так, чтобы n-угольники (красные) касались друг друга на одном ребре. Итак, я построила три двенадцатиугольника.» «Замечательно.»
Каков периметр 27-угольника? 2 синих очка. Какова площадь фигуры c тремя двенадцатиугольниками и треугольником? 4 синих очка
Какие существуют правильные n-угольники, которые можно окружить «кольцом» из правильных n-угольников, как в синей задаче? 6 красных очков.
hun
"Ez jól néz ki" – mondta Bernd a nővérének. "Igen, ez nekem is tetszik. Rajzoltam egy kis egyenlő oldalú háromszöget ABC (a = 1 cm). Aztán arra gondoltam, hogy az azonos méretű szabályos n-szögek teljesen körülzárhatják a háromszöget úgy, hogy az n-szögek (piros) egy-egy szélén érintkezzenek egymással. Így szerkesztettem meg a három dodekagont." Nagyszerű."
Mi a kerülete a 27 szögnek? 2 kék pont. Mi az ábra területe? 4 kék pont
Milyen más szabályos n-szögek vannak, amelyeket szabályos n-szögek "gyűrűjével" lehet körülzárni - mint a kék feladatban? 6 piros pont.
https://www.schulmodell.eu/2648-a-h%C3%A9t-feladata.html
frz
«Ça a l'air bien», dit Bernd à sa sœur. «Oui, j'aime ça aussi. J'ai dessiné un petit triangle équilatéral ABC (a = 1 cm). Ensuite, j'ai réfléchi aux n coins réguliers de même taille qui pourraient entourer complètement le triangle de sorte que les n coins (rouges) se touchent sur un bord. J'ai donc construit les trois dodécagones "Super".
Quelle est la circonférence de la figure de 27-coins ? 2 points bleus. Quelle est la superficie de la figure ? 4 points bleus
Quels n-coins réguliers existe-t-il qui peuvent être entourés d'un « anneau » de n-coins réguliers - comme dans le problème bleu ? 6 points rouges.
https://www.schulmodell.eu/2201-probleme-de-maths-de-la-semaine.html
esp
"Esto se ve muy bien", dijo Bernd a su hermana. "Sí, también me gusta. He dibujado un pequeño triángulo equilátero ABC (a = 1 cm). Luego pensé en qué polígonos regulares del mismo tamaño podrían rodear completamente el triángulo, de modo que los vértices (rojos) toquen un lado cada uno. Así que construí los tres dodecágonos." Genial."
¿Cuál es el tamaño del perímetro del 27ésimo número? 2 puntos azules. ¿Cuál es el área de la figura? 4 puntos azules.
¿Qué otros polígonos regulares de n lados encuentras que pueden ser rodeados por un "anillo" de polígonos similares, como en el ejercicio azul? 6 puntos rojos.
https://www.schulmodell.eu/2412-ejercicio-de-matem%C3%A1ticas-semanal.html
en
"That looks good," Bernd told his sister. "Yes, I like that too. I drew a small equilateral triangle ABC (a = 1 cm). Then I thought about which regular n vertices of the same size could completely enclose the triangle so that the n vertices (red) each touch on one edge. That's how I constructed the three dodecagons." Great."
What is the perimeter of the 27-corner? 2 blue points. What is the area of the figure? 4 blue points
What other regular n-corners are there that can be enclosed by a "ring" of regular n-corners - as in the blue exercise? 6 red points.
Deadline for solution is the 2nd. May 2024.
https://www.schulmodell.eu/1453-this-weeks-maths-problem.html
it
“Sempre più bello!” disse Bernd a sua sorella. “Sì, anche a me piace. Ho disegnato un piccolo triangolo equilatero ABC (a = 1 cm). Poi ho pensato a quali poligoni regolari dello stesso lato n potrebbero avvolgere completamente il triangolo, in modo che i vertici n (rossi) tocchino ciascuno un lato. Così ho costruito i tre dodecagoni.” “Fantastico.” Qual è la lunghezza del perimetro del 27-agono? 2 punti blu. Qual è l'area della figura? 4 punti blu.
Quali altri poligoni regolari possono essere circondati da un "anello" di poligoni regolari, come nell'esercizio blu? 6 punti rossi.
https://www.schulmodell.eu/1984-problema-di-matematica-della-settimana.html
Lösung/solution/soluzione/résultat/Решение:
Die Antwort bei rot zeigt, dass es nur wenige n-Ecke gibt, die einen "Ring" haben. Die Möglichkeiten für einen Ring für die regelmäßigen Dreiecke und die Quadrate sind "sehr groß", da in der Aufgabenstellung nicht verlangt wird, dass die Elemente des Rings die gleiche Kantenlänge haben müssen, wie das zu umschließende n-Eck.
Musterlösung von D. Uschner, danke --> pdf <--
Aufgabe 6
786. Wertungsaufgabe
deu
„Das 3-4-5-Dreieck des Pythagoras (Dreieck ABC - blau) ist wieder einmal der Start für eine meiner Konstruktionen.“, sagte Mike.
Die zu sehenden Vierecke sind Quadrate. Die weißen Dreiecke und das grüne Dreieck sind alle dem blauen Dreieck ähnlich.
Wie groß sind die Flächeninhalte aller roten Quadrate zusammen? 3 blaue Punkte.
Wie groß ist der Flächenhalt des grünen Dreiecks? 3 rote Punkte
https://www.schulmodell.eu/aufgabe-der-woche.html
Termin der Abgabe 09.05.2024. La limtago por sendi viajn solvojn estas la 9-a de majo 2024. Срок сдачи 09.05.2024. Ultimo termine di scadenza per l´invio è il 09.05.2024. Deadline for solution is the 9th. May 2024. Date limite pour la solution 09.05.2024. Las soluciones deben ser enviadas hasta el 09.05.2024. Beadási határidő 2024.05.09. 截止日期: 2024.05.09 – 请用徳语或英语回答 Διορία παράδοσης λύσης 09/05/2024. Παρακαλείστε να υποβάλετε τις λύσεις στα αγγλικά ή στα γερμανικά.
الموعد النهائي للتسليم هو 09/05/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرن
esperanto:
„Tio 3-4-5-triangulo de Pythagoras (la blua triangulo ABC) estas denove la komenco por mia konstruaĵo.“, diris Mike.
La videblaj kvarlateroj estas kvadratoj. La blankaj kaj la verda trianguloj ĉiuj similas al la blua triangulo.
Kiom granda estas la suma areo de ĉiuj ruĝaj kvadratoj? 3 bluaj poentoj.
Kiom granda estas la areo de la verda triangulo? 3 ruĝaj poentoj
La limtago por sendi viajn solvojn estas la 9-a de majo 2024. La solvojn skribu prefere en la germana, angla aŭ franca.
https://www.schulmodell.eu/3155-tasko-de-la-semajno-aufgabe-esperanto.html
arabisch-التمرين الإسبوعي:
قال مايك: " إنه مرة أخرى مثلث فيثاغورس الشهير ( 3-4-5 ) ABC أساس الشكل الهندسي الذي رسمته."
إن جميع الأشكال الرباعية هي مربعات.
المثلثات البيضاء والمثلث الأخضر كلها تشبه المثلث الأزرق.
ما هي مساحة جميع المربعات الحمراء مجتمعة؟ 3 نقاط زرقاء.
ما هي مساحة المثلث الأخضر؟ 3 نقاط حمراء
الموعد النهائي للتسليم هو /09/05/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.
https://www.schulmodell.eu/3150-arabisch-التمرين-الإسبوعي.html
griechisch:
"Το τρίγωνο 3-4-5 του Πυθαγόρα (τρίγωνο ABC - μπλε) είναι και πάλι η αρχή μιας από τις κατασκευές μου", δήλωσε ο Mike.
Τα τετράπλευρα που βλέπετε είναι τετράγωνα. Τα λευκά τρίγωνα και το πράσινο τρίγωνο είναι όλα παρόμοια με το μπλε τρίγωνο.
Πόσο μεγάλα είναι τα εμβαδά όλων των κόκκινων τετραγώνων μαζί; 3 μπλε κουκκίδες.
Ποιο είναι το εμβαδόν του πράσινου τριγώνου; 3 κόκκινες κουκκίδες.
https://www.schulmodell.eu/3126-wochenaufgabe-griechisch.html
chin
第786题
"毕达哥拉斯的3-4-5三角形(见图中蓝色的三角形ABC) 再次成为我构图的起点。" 迈克说道。
我们所看到的四边形都是正方形,白色三角形和绿色三角形都与蓝色三角形相似。
那么红色正方形的总面积之和是多少?3个蓝点。
绿色三角形的面积是多少? 3个红点。
截止日期: 2024.05.09. 请用徳语或英语回答
https://www.schulmodell.eu/2952-woch-chin.html
rus
«Треугольник Пифагора 3-4-5 (треугольник ABC — синий) — он снова начало одной из моих конструкций», — сказал Майк.
Четырёхугольники, которые вы видите, — это квадраты. Белые треугольники и зелёный треугольник подобны на синий треугольник.
Какова площадь всех красных квадратов вместе взятых? 3 синих очка.
Какова площадь зелёного треугольника? 3 красных очка
hun
"Püthagorasz 3-4-5 háromszöge (ABC háromszög - kék) ismét az egyik konstrukcióm kezdete" - mondta Mike.
A látható négyszögek négyzetek. A fehér háromszögek és a zöld háromszög mind hasonló a kék háromszöghöz.
Mekkora az összes piros négyzet területe? 3 kék pont.
Mekkkora a zöld háromszög területe? 3 piros pont
https://www.schulmodell.eu/2648-a-h%C3%A9t-feladata.html
frz
"Le triangle 3-4-5 de Pythagore (triangle ABC - bleu) est encore une fois le début d'une de mes constructions", a déclaré Mike.
Les carrés qu’on peut voire sont des cubes. Les triangles blancs et le triangle vert sont tous semblables au triangle bleu.
Quelle est l’aire de tous les carrés rouges réunis ? 3 points bleus.
Quelle est l'aire du triangle vert ? 3 points rouges
https://www.schulmodell.eu/2201-probleme-de-maths-de-la-semaine.html
esp
"El triángulo 3-4-5 de Pitágoras (triángulo ABC - azul) es una vez más el comienzo de una de mis construcciones", dice Mike.
Los cuadriláteros que se ven son cuadrados. Los triángulos blancos y el triángulo verde son similares al triángulo azul.
¿Qué tamaño tienen las áreas de todos los cuadrados rojos juntos? 3 puntos azules.
¿Cuál es el área del triángulo verde? 3 puntos rojos
https://www.schulmodell.eu/2412-ejercicio-de-matem%C3%A1ticas-semanal.html
en
"The 3-4-5 Pythagorean triangle (triangle ABC - blue) is once again the start of one of my constructions," said Mike.
The rectangles you can see are squares. The white triangles and the green triangle are all similar to the blue triangle.
How big are the areas of all the red squares together? 3 blue points.
What is the area of the green triangle? 3 red points
Deadline for solution is the 9th. May 2024.
https://www.schulmodell.eu/1453-this-weeks-maths-problem.html
it
"Il triangolo di Pitagora 3-4-5 (triangolo ABC - blu) è ancora una volta l'inizio per una delle mie costruzioni", disse Mike.
I quadrati visibili sono quadrati. I triangoli bianchi e il triangolo verde sono tutti simili al triangolo blu.
Qual è l'area totale di tutti i quadrati rossi insieme? 3 punti blu.
Qual è l'area del triangolo verde? 3 punti rossi.
https://www.schulmodell.eu/1984-problema-di-matematica-della-settimana.html
Lösung/solution/soluzione/résultat/Решение:
Musterlösung von calvin, danke. --> pdf <--
Aufgabe 7
787. Wertungsaufgabe
deu
„Ihr habt ja immer wieder Aufgaben mit rechtwinkligen Dreiecken zu lösen. Wisst ihr aber auch, wann der Pythagoras Geburtstag hat?“, fragte der Opa. „Keine Ahnung“, platzte Bernd heraus. „Ich gebe zu, die Frage ist etwas gemein, denn diese Information ist nicht überliefert. Aber die Freunde des Pythagoras wissen sich zu helfen.“, schmunzelte der Opa.
Man nutzt die Angaben eines Datums. Tageszahl d (1; …; 31), Monatszahl m (1; …; 12) und die Jahreszahl j. Diese Zahl kann (muss nicht) einstellig sein, Beispiel 2009 einfach (wenn es vor der letzten zwei Nullen sind) 9. Die Zahl kann zweistellig sein (muss nicht), Beispiel 2030 wird zu 30 (wenn die zweite Stelle eine Null ist) oder die Jahreszahl vierstellig. Wenn sich d², m² und j² in die Form a² + b² = c² bringen lassen, dann ist der Geburtstag von Pythagoras angesagt.
Beispiele: 5.12.2013 wird zu 5² + 12² = 13² und 3.5.2004 wird zu 3² + 4² = 5²
Als Jahreszahlen dürfen die Zahlen 2000 bis 3000 genutzt werden.
Wann wurde im Zeitraum bis 2010 der Geburtstag von Pythagoras gefeiert? 4 blaue Punkte
Wann wird der nächste Geburtstag gefeiert und wann der letzte in dem Zeitraum? 4 rote Punkte
https://www.schulmodell.eu/aufgabe-der-woche.html
Termin der Abgabe 16.05.2024. La limtago por sendi viajn solvojn estas la 16-a de majo 2024. Срок сдачи 16.05.2024. Ultimo termine di scadenza per l´invio è il 16.05.2024. Deadline for solution is the 16th. May 2024. Date limite pour la solution 16.05.2024. Las soluciones deben ser enviadas hasta el 16.05.2024. Beadási határidő 2024.05.16. 截止日期: 2024.05.16 – 请用徳语或英语回答 Διορία παράδοσης λύσης 16/05/2024. Παρακαλείστε να υποβάλετε τις λύσεις στα αγγλικά ή στα γερμανικά.
الموعد النهائي للتسليم هو 16/05/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرن
esperanto:
„Vi ja ĉiam solvas taskojn kun rektangulaj trianguloj. Sed ĉu vi scias kiam Pythagoras havas naskiĝtagon?“, demandis la avo. „Neniu supozo“, eksonas Bernd. „Mi konfesas ke la demando estas iom malica, ĉar la korekta informo ne estas pruvebla. Sed la amikoj de Pythagoras kapabla helpi al si.“, ridetas la avo.
Oni uzas la informerojn pri la tago. La nombro de la tago d (1; ...; 31), la nombro de la monato m (1; ...; 12) kaj la nombro de la jaro j. Tiu lasta nombro povas (sed ne devas) esti unucifera, ekzemplo 2009 simple (se antaŭ la lasta cicero estas du nuloj) 9. La nombro j ankaŭ povas (sed ne devas) esti ducifera, ekzemplo 2030 fariĝas 30 (se la dua cicero estas nulo) aŭ la nombro por la jaro estas kvarcifera. Se por d², m² kaj j² validas a² + b² = c², la naskiĝtago de Pythagoras estas je tiu tago.
Ekzemploj: 5.12.2013 fariĝas 5² + 12² = 13² kaj 3.5.2004 fariĝas 3² + 4² = 5²
Kiel nombroj por la jaro oni rajtas uzi la nombrojn 2000 ĝis 3000. Kiam oni festis la naskiĝtagon de Pythagoras en la tempospaco ĝis la jaro 2010? 4 bluaj poentoj
Kiam oni festos la sekvan naskiĝtagon kaj kiam estos la lasta en tiu tempospaco? 4 ruĝaj poentoj
La limtago por sendi viajn solvojn estas la 16-a de majo 2024. La solvojn skribu prefere en la germana, angla aŭ franca.
https://www.schulmodell.eu/3155-tasko-de-la-semajno-aufgabe-esperanto.html
arabisch-التمرين الإسبوعي:
قال الجد: " حت الآن قمتم بحل مسائل تتعلق بالمثلثات القائمة. و لكن هل تعرفون متى وُلِد فيثاغورث؟".
قال برند: " أنا لا أعلم".
فضحك الجد وقال:" أقر بأن السؤال قليلاً شائنًا، لأن هذه المعلومة غير موثقة تاريخاً.
و لكن أصدقاء فيثاغورث يعرفون كيف يحصلون على هذه المعلومة " و تبسم الجد.
باستخدام التاريخ dd/mm/jjjj:
للدلالة على اليوم نستخدم d(1,….,31)
للدلالة على الشهر نستخدم m(1,…12)
للدلالة على السنة نستخدم j
يتم استخدام معلومات تاريخية معينة، مثل اليوم d (1 إلى 31) والشهر m (1 إلى 12) والسنة j.
الرقم الذي يدل على اليوم أو الشهر قد يكون ذات منزلة واحدة أو منزلتين .
الرقم الذي يدل على السنة يتكون من منزلة الآحاد فقط إذا كانت منزلة العشرات و المئات هي الصفر
الرقم الذي يدل على السنة يتكون من منزلة الآحاد و العشرات إذا كانت منزلة المئات هي الصفر
مثال :
التاريخ 05.12.2009 يعادل 5.12.9
التاريخ 30.01.2011 يعادل 3.1.11
عليك إيجاد التاريخ الذي يحقق المعادلة التالية :
التاريخ 5.12.2013 يحقق المعادلة 5² + 12² = 13²
التاريخ 3.5.2004 يحقق المعادلة 3² + 4² = 5²
يمكنك استخدام الفترة الزمنية من سنة 2000 إلى سنة 3000
متى تم الاحتفال بعيد ميلاد فيثاغورث في الفترة الزمنية حتى عام 2010؟ 4 نقاط زرقاء
متى سيتم الاحتفال بالعيد القادم ومتى الأخير في ذلك الفترة؟ 4 نقاط حمراء
الموعد النهائي للتسليم هو /16/05/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.
https://www.schulmodell.eu/3150-arabisch-التمرين-الإسبوعي.html
griechisch:
"Πρέπει πάντα να λύνεις προβλήματα με ορθογώνια τρίγωνα. Ξέρεις όμως πότε είναι τα γενέθλια του Πυθαγόρα;" ρώτησε ο παππούς. "Δεν έχω ιδέα", ξεστόμισε ο Bernd. "Παραδέχομαι ότι η ερώτηση είναι λίγο κακιά, επειδή αυτή η πληροφορία δεν έχει περάσει από το μυαλό μας. Αλλά οι φίλοι του Πυθαγόρα ξέρουν πώς να βοηθήσουν τον εαυτό τους", χαμογέλασε ο παππούς.
Χρησιμοποιείτε τις πληροφορίες μιας ημερομηνίας. Ο αριθμός της ημέρας d (1; ...; 31), ο αριθμός του μήνα m (1; ...; 12) και ο αριθμός του έτους j. Αυτός ο αριθμός μπορεί (δεν χρειάζεται) να είναι μονοψήφιος, για παράδειγμα το 2009 γίνεται απλά (αν υπάρχουν δύο μηδενικά πριν από το τελευταίο ψηφίο) 9. Ο αριθμός μπορεί (δεν χρειάζεται) να είναι διψήφιος, για παράδειγμα το 2030 γίνεται 30 (αν το δεύτερο ψηφίο είναι μηδέν) ή το έτος έχει τέσσερα ψηφία. Αν τα d², m² και j² μπορούν να τεθούν στη μορφή a² + b² = c², τότε είναι τα γενέθλια του Πυθαγόρα.
Παραδείγματα: 5.12.2013 γίνεται 5² + 12² = 13² και 3.5.2004 γίνεται 3² + 4² = 5².
Οι αριθμοί 2000 έως 3000 μπορούν να χρησιμοποιηθούν ως έτη.
Πότε γιορτάστηκαν τα γενέθλια του Πυθαγόρα κατά την περίοδο μέχρι το 2010; 4 μπλε κουκκίδες
Πότε γιορτάζονται τα επόμενα γενέθλια και πότε τα τελευταία στην περίοδο; 4 κόκκινες κουκκίδες
https://www.schulmodell.eu/3126-wochenaufgabe-griechisch.html
chin
第787题
“你们一直在不停地解决直角三角形的问题。但你们知道毕达哥拉斯的生日是什么时候吗?” 爷爷问道。
“我不知道。” 伯恩德脱口而出。
“我承认,这个问题有点刁钻,因为这个信息并没有传世。但毕达哥拉斯的朋友们却知道怎么做。” 爷爷笑着说道。
我们用这些数据表示日期: 天数:d(1;…;31),月数: m(1;…;12), 年份:j。
这个数字可能是一位数(也可能不是),例如2009年,这个比较简单,是9(如果这个数字前是两个零)。
数字可能是两位数(也可能不是),例如2030年就变成了30(如果第二个数字是零)。
年份数字也可能是四位数。
如果把d²,m²和j²写成a² + b² = c²的形式,那么毕达哥拉斯的生日就会出现了。
例如:2013年5月12日写成 5² + 12² = 13²,2004年5月3日变成 3² + 4² = 5²
我们使用2000年到3000年中的年份数字。
请问: 在2010年之前的时间段内,毕达哥拉斯的生日是什么时候?4个蓝点
在这个时间段内,下一个生日是什么时候?最后一个生日是什么时候?4个红点
截止日期: 2024.05.16. – 请用徳语或英语回答
https://www.schulmodell.eu/2952-woch-chin.html
rus
«Всегда вам приходится решать задачи с прямоугольными треугольниками. А знаете ли вы, когда день рождения Пифагора?» — спросил дедушка. «Понятия не имею», — выпалил Бернд. «Я признаю, что вопрос немного коварный, потому что эта информация не была передана. Но друзья Пифагора знают, как помочь себе», — ухмыльнулся Дедушка.
Вы используете информацию о дате. Номер дня d (1; …; 31), номер месяца m (1; …; 12) и номер года j. Это число может (не обязательно) быть одной цифрой, например 2009 становится 9 (если перед последней цифрой стоят два нуля). Число может (не обязательно) состоять из двух цифр, например 2030 становится 30 (если вторая цифра — ноль) или год — четыре цифры. Если d², m² и j² можно выразить в виде a² + b² = c², то это день рождения Пифагора.
Примеры: 5.12.2013 становится 5² + 12² = 13², а 3.5.2004 становится 3² + 4² = 5².
Числа от 2000 до 3000 можно использовать в качестве номеров года.
Когда отмечался день рождения Пифагора в период до 2010 года? 4 синих очка
Когда празднуется следующий день рождения и когда последний в этом периоде? 4 красных очка
hun
"Ti újra és újra feladatokat oldotok meg derékszögű háromszögekkel. De tudjátok, mikor van Püthagorasz születésnapja?" – kérdezte a nagyapa. – Nem tudom – bökte ki Bernd. "Elismerem, hogy a kérdés egy kicsit megtévesztő, mert ez az információ nem ismert. De Püthagorasz barátai tudják, hogyan segítsenek magukon – mosolygott a nagyapa.
Használjuk egy dátum adatait. d nap (1; ...; 31), m hónap (1; ...; 12) és a j év. Ez a szám lehet egyjegyű szám(nem kell), például 2009 egyszerűen (ha két nulla van az utolsó kettő előtt) 9. A szám lehet két számjegyű (nem kell, hogy az legyen), például 2030-ból 30 lesz (ha a második számjegy nulla), vagy az év négy számjegyből áll.
Ha d², m² és j² a² + b² = c² formába hozható, akkor ez Püthagorasz születésnapját jelenti.
Példák: 2013.12.5-ből 5² + 12² = 13² lesz, 2004.5.3-ból pedig 3² + 4² = 5² lesz.
Évként a 2000-től 3000-ig terjedő számok használhatók.
Mikor ünnepelték Püthagorasz születésnapját 2010-ig? 4 kék pont
Mikor ünneplik a következő születésnapot, és mikor lesz az utolsó ebben az időszakban? 4 piros pont
https://www.schulmodell.eu/2648-a-h%C3%A9t-feladata.html
frz
« Vous avez toujours à résoudre des problèmes avec des triangles rectangles. « Mais est-ce que vous connaissez la date d’anniversaire de Pythagore ? » demanda grand-père. "Je n'en ai aucune idée", a lâché Bernd. « J'avoue que la question est un peu méchante, car cette information n'a pas été transmise. Mais les amis de Pythagore savent s’entraider », sourit grand-père.
On utilise les informations d’une date. Numéro du jour d (1; …; 31), numéro du mois m (1; …; 12) et numéro de l'année j. Ce nombre peut (mais pas nécessairement) être composé d'un chiffre, par exemple 2009 devient 9 (s'il y a deux zéros avant le chiffre) ou 2030 devient 30 (si le deuxième chiffre de l’année est zéro) ou l'année à quatre chiffres. Si d², m² et j² peuvent être mis sous la forme a² + b² = c², alors c'est l'anniversaire de Pythagore.
Exemples : le 05/12/2013 devient 5² + 12² = 13² et le 03/05/2004 devient 3² + 5² = 4²
Les nombres 2000 à 3000 peuvent être utilisés comme numéros d’année.
Quand l’anniversaire de Pythagore a-t-il été célébré dans la période jusqu’en 2010 ? 4 points bleus
Quand sera célébrer le prochain anniversaire et quand est le dernier de la période ? 4 points rouges
https://www.schulmodell.eu/2201-probleme-de-maths-de-la-semaine.html
esp
„787. tareas de puntuación
"Siempre os toca resolver problemas con triángulos rectángulos. Pero, ¿sabéis cuándo es el cumpleaños de Pitágoras?", preguntó el abuelo. "Ni idea", respondió Bernd de inmediato. "Tengo que admitir que la pregunta es un poco tramposa, porque esa información no está registrada. Pero los amigos de Pitágoras saben cómo resolverlo", sonrió el abuelo.
Se utilizan los datos de una fecha: día d (1; …; 31), mes m (1; …; 12) y año j. Este número puede (o no) ser de un solo dígito, por ejemplo, 2009 simplemente sería 9 (si está antes de los últimos dos ceros). El número puede tener dos dígitos (o no), por ejemplo, 2030 se convertiría en 30 (si el segundo dígito es cero) o el año puede tener cuatro dígitos. Si es posible expresar d², m² y j² en la forma a² + b² = c², entonces es el cumpleaños de Pitágoras.
Ejemplos: El 5.12.2013 se convierte en 5² + 12² = 13² y el 3.5.2004 se convierte en 3² + 4² = 5².
Se pueden utilizar años entre 2000 y 3000.
¿Cuándo se celebró el cumpleaños de Pitágoras hasta 2010? (4 puntos azules)
¿Cuándo será el próximo cumpleaños y cuándo será el último dentro de ese periodo? (4 puntos rojos)"
https://www.schulmodell.eu/2412-ejercicio-de-matem%C3%A1ticas-semanal.html
en
‘You always have to solve problems with right-angled triangles. But do you know when Pythagoras‘ birthday is?’ asked Grandad. ‘No idea,’ Bernd blurted out. ‘I admit the question is a bit mean, because this information hasn't been passed down. But the friends of Pythagoras know how to help themselves,’ grinned the grandad.
You use the information of a date. Day number d (1; ...; 31), month number m (1; ...; 12) and the year number j. This number can (does not have to) be a one-digit number, for example 2009 simply (if there are two zeros before the last digit) 9. The number can (does not have to) be a two-digit number, for example 2030 becomes 30 (if the second digit is a zero) or the year has four digits. If d², m² and j² can be put into the form a² + b² = c², then it is Pythagoras' birthday.
Examples: 5.12.2013 becomes 5² + 12² = 13² and 3.5.2004 becomes 3² + 4² = 5²
The numbers 2000 to 3000 can be used as years.
When was Pythagoras' birthday celebrated in the period up to 2010? 4 blue points
When is the next birthday celebrated and when is the last one in the period? 4 red points
Deadline for solution is the 16th. May.
https://www.schulmodell.eu/1453-this-weeks-maths-problem.html
it
"Affrontate spesso problemi con triangoli rettangoli. Ma sapete anche quando è il compleanno di Pitagora?", chiese il nonno. "Non ne ho idea", rispose Bernd. "Ammetto che la domanda è un po' ingannevole, perché questa informazione non è tramandata. Ma gli amici di Pitagora sanno come aiutarsi", sorrise il nonno. Si utilizzano le cifre di una data. Il giorno d (1; ...; 31), il mese m (1; ...; 12) e l'anno j. Questo numero può essere (ma non deve) a una cifra, ad esempio 2009 diventa semplicemente 9 (se prima delle ultime due cifre ci sono due zeri). Il numero può essere a due cifre (ma non deve), ad esempio 2030 diventa 30 (se la seconda cifra è zero) o l'anno può essere a quattro cifre. Se d², m² e j² possono essere scritti nella forma a² + b² = c², allora è il compleanno di Pitagora. Esempi: il 5.12.2013 diventa 5² + 12² = 13² e il 3.5.2004 diventa 3² + 4² = 5². Le cifre degli anni possono essere tra il 2000 e il 3000. In che anno è stato celebrato il compleanno di Pitagora entro il 2010? 4 punti blu. Quando sarà celebrato il prossimo compleanno e quando sarà celebrato l'ultimo nel periodo specificato? 4 punti rossi.
https://www.schulmodell.eu/1984-problema-di-matematica-della-settimana.html
Lösung/solution/soluzione/résultat/Решение:
Vorbemerkungen: Die Gleichung x² + y² = z² gilt natürlich auch zum Beispiel 10² + 0² = 10² und passt damit zum Datum 10.10. 2000 bzw. 10.10.3000, aber als Geburtstag für Pythagoras ist das eher nicht geeignet. Schließlich gibt es keine rechtwinkligen Dreiecke mit einer Kathete der Seitenlänge. Ob das die Fans von Pythagoras abschreckt, ist mir nicht bekannt.
In der Aufgabenstellung war ausgeschlossen die Zweistelligkeit der Jahreszahl zu verwenden, wenn keine 0 davorsteht, also 2025 --> 25, ja, aber 2125 --> 25 nein. Wie das in 100 Jahren sein wird, kann ich nicht sagen. Möge das der dann zuständige Homepageredakteur hier ergänzen.
Musterlösung von Hans, danke. --> pdf <--
Aufgabe 8
788. Wertungsaufgabe
deu
Das Bild zeigt ein Dreieck mit 3 cm, 4 cm und 5 cm. Wie leicht zu sehen ist, handelt es sich mal nicht um das Dreieck des Pythagoras. Die Strecken liegen im Inneren des Dreiecks.“, sagte der Opa von Maria und Bernd. „Sind die Winkel zwischen den Strecken gleich groß“, fragte Maria. „Aber ja.“
Wie groß sind Umfang und Flächeninhalt des grünen Dreiecks? Berechnung 5 rote Punkte.
Wie groß wären Umfang und Flächeninhalt eines solchen grünen Dreiecks, wenn die inneren Strecken alle 4 cm lang wären? 5 blaue Punkte.
https://www.schulmodell.eu/aufgabe-der-woche.html
Termin der Abgabe 23.05.2024. La limtago por sendi viajn solvojn estas la 23-a de majo 2024. Срок сдачи 23.05.2024. Ultimo termine di scadenza per l´invio è il 23.05.2024. Deadline for solution is the 23th. May 2024. Date limite pour la solution 23.05.2024. Las soluciones deben ser enviadas hasta el 23.05.2024. Beadási határidő 2024.05.23. 截止日期: 2024.05.23. – 请用徳语或英语回答 Διορία παράδοσης λύσης 23/05/2024. Παρακαλείστε να υποβάλετε τις λύσεις στα αγγλικά ή στα γερμανικά.
الموعد النهائي للتسليم هو 23/05/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرن
esperanto:
„La bildo montras triangulon kun 3 cm, 4 cm kaj 5 cm. Kiel oni povas facile vidi, ĉifoje ne temas pri la triangulo de Pythagoras. La strekoj estas en la interno de la triangulo.“, diris la avo de Maria kaj Bernd. „Ĉu la anguloj inter la strekoj estas samgrandaj?“, demandis Maria. „Jes, certe.“
Kiom longa estas la rando kaj kiom granda estas la areo de la verda triangulo? La kalkulo valoras 5 ruĝajn poentojn.
Kiom longa estus la rando kaj kiom granda estus la areo de tia verda triangulo, se la internaj strekoj ĉiuj estus 4 cm longaj? 5 bluaj poentoj
La limtago por sendi viajn solvojn estas la 23-a de majo 2024. La solvojn skribu prefere en la germana, angla aŭ franca.
https://www.schulmodell.eu/3155-tasko-de-la-semajno-aufgabe-esperanto.html
arabisch-التمرين الإسبوعي:
قال جد ماريا وبرند : " إن الشكل ألمرسوم يمثل مثلثًا ABC بأضلاع داخلية بطول 3 سم و 4 سم و 5 سم. يمكن بسهولة أن نلاحظ بأنه ليس مثلث فيثاغورث الشهير.
إن النقطة M هي نقطة التقاء الأضلاع الداخلية داخل المثلث ABC .
سألت ماريا: "هل الزوايا بين الأضلاع الداخلية متساوية القياس ؟ "
أجاب الجد :" نعم بالطبع ، ما هو حجم ومساحة المثلث الأخضر ؟" 5 نقاط حمراء
ما هو حجم ومساحة مثلث أخضر مماثل إذا كانت الأضلاع الداخلية كلها بطول 4 سم؟ 5 نقاط زرقاء
الموعد النهائي للتسليم هو /23/05/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.
https://www.schulmodell.eu/3150-arabisch-التمرين-الإسبوعي.html
griechisch:
Η εικόνα δείχνει ένα τρίγωνο με 3 cm, 4 cm και 5 cm. Όπως μπορείτε εύκολα να δείτε, αυτό δεν είναι το πυθαγόρειο τρίγωνο. Οι γραμμές είναι μέσα στο τρίγωνο", είπε ο παππούς της Marias και του Bernd. "Οι γωνίες μεταξύ των γραμμών έχουν το ίδιο μέγεθος;" ρώτησε η Maria. "Φυσικά και είναι".
Ποια είναι η περίμετρος και το εμβαδόν του πράσινου τριγώνου; Υπολογίστε 5 κόκκινες κουκκίδες.
Πόσο μεγάλη θα ήταν η περίμετρος και το εμβαδόν ενός τέτοιου πράσινου τριγώνου αν οι εσωτερικές γραμμές είχαν όλες μήκος 4 cm; 5 μπλε κουκκίδες.
https://www.schulmodell.eu/3126-wochenaufgabe-griechisch.html
chin
第788题
"这张图中的三角形有三条边儿,分别为3厘米、4厘米和5厘米。但是显而易见,这个不是毕达哥拉斯三角形。这些线段位于三角形的内部。" 玛丽雅和贝恩德的爷爷说道。
"这些线段之间的角的度数相等吗?" 玛丽雅问道。
"当然。"
求绿色三角形的周长和面积各是多少? 5个红点。
如果三角形内部的线段都是4厘米长,那么这个绿色三角形的周长和面积各是多少? 5个蓝点。
截止日期: 2024.05.23. – 请用徳语或英语回答
https://www.schulmodell.eu/2952-woch-chin.html
rus
«На картинке изображён треугольник с отрезками 3 см, 4 см и 5 см. Как легко видеть, это не треугольник Пифагора. Отрезки лежат внутри треугольника», — сказал дедушка Марии и Бернда. «А углы между отрезками одинаковые?» — спросила Мария. "Да."
Каковы периметр и площадь зелёного треугольника? Расчёт - 5 красных очков.
Каковы были бы периметр и площадь такого же зелёного треугольника, если бы все внутренние отрезки имели длину 4 см? 5 синих очков.
hun
A képen egy háromszög látható 3 cm-es, 4 cm-es és 5 cm-es szakaszokkal. Ahogy ez könnyen észrevehető, ez nem a Pitagorasz háromszöge. A szakaszok a háromszög belsejében vannak." - mondta Mária és Bernd nagyapja. "Az oldalak közötti szögek egyenlők?" - kérdezte Mária. "Igen."
Mekkora a zöld háromszög kerülete és területe? A számolás 5 piros pont ér.
Mekkora lenne a zöld háromszög kerülete és területe, ha a belső szakaszok mindegyike 4 cm hosszú lenne? 5 kék pont.
https://www.schulmodell.eu/2648-a-h%C3%A9t-feladata.html
frz
L'image montre un triangle de 3 cm, 4 cm et 5 cm. Comme on peut le constater, il ne s’agit pas du triangle de Pythagore. Les lignes se trouvent à l’intérieur du triangle », explique le grand-père de Maria et Bernd. "Les angles entre les distances sont-ils les mêmes", a demandé Maria. "Mais oui."
Quels sont le périmètre et l'aire du triangle vert ? Calcul 5 points rouges.
Quelle serait la circonférence et l'aire d'un tel triangle vert si les segments intérieurs mesuraient tous 4 cm de long ? 5 points bleus.
https://www.schulmodell.eu/2201-probleme-de-maths-de-la-semaine.html
esp
„788. tareas de puntuación
La imagen muestra un triángulo de 3 cm, 4cm y 5 cm. Como es fácil ver, este no es un triángulo pitagórico. Las líneas están dentro del triángulo", dice el abuelo de María y Bernd. «¿Los ángulos entre las líneas son del mismo tamaño?», preguntó María. «Claro que sí».
¿Cuál es el perímetro y el área del triángulo verde? 5 puntos rojos.
¿Cuánto medirían el perímetro y el área de ese triángulo verde si las líneas interiores midieran todas 4 cm? 5 puntos azules.
https://www.schulmodell.eu/2412-ejercicio-de-matem%C3%A1ticas-semanal.html
en
‘The picture shows a triangle with 3 cm, 4 cm and 5 cm. As you can easily see, this is not the Pythagorean triangle. The lines are inside the triangle,’ said Maria and Bernd's grandad. ‘Are the angles between the lines the same size?’ asked Maria. ‘Of course they are.’
What are the perimeter and area of the green triangle? Calculate 5 red points.
How big would the perimeter and area of such a green triangle be if the inner lines were all 4 cm long? 5 blue points.
Deadline for solution is the 23th. May 2024.
https://www.schulmodell.eu/1453-this-weeks-maths-problem.html
it
"Il disegno mostra un triangolo con lati di 3 cm, 4 cm e 5 cm. Come si può vedere facilmente, non si tratta del triangolo di Pitagora. Le linee giacciono all'interno del triangolo", disse il nonno di Maria e Bernd. "I angoli tra le linee sono uguali?", chiese Maria. "Ma certo."
Quale sarebbe il perimetro e l'area del triangolo verde? Calcola 5 punti rossi.
Quali sarebbero il perimetro e l'area di un triangolo verde simile, se le linee interne fossero tutte lunghe 4 cm? 5 punti blu.
https://www.schulmodell.eu/1984-problema-di-matematica-della-settimana.html
Lösung/solution/soluzione/résultat/Решение:
Musterlösung von G. Palme, danke --> pdf <--
Aufgabe 9
789. Wertungsaufgabe
deu
„Schaut mal, ich habe die Zahlen 3, 4 und 5 mal ganz anders eingesetzt.“, sagte Lisa. Von A nach B sind es 3 cm. Dann kommt ein rechter Winkel und weiter zu C (4 cm) wieder rechtwinklig abbiegen zu D (5 cm). Dann von D aus wieder von vorn. Abbiegen 3 cm und so weiter.
Die Zeichnung ist fortzusetzen bis man wieder beim Punkt A ankommt. Wie lang ist der gesamte Streckenzug ABC...A? 3 blaue Punkte.
Wie groß sind Flächeninhalt und Umfang des kleinsten Vielecks, das alle Punkte der blauen Aufgabe als Eckpunkte hat. 7 rote Punkte (kein überschlagenes Vieleck)
https://www.schulmodell.eu/aufgabe-der-woche.html
Termin der Abgabe 30.05.2024. La limtago por sendi viajn solvojn estas la 30-a de majo 2024. Срок сдачи 30.05.2024. Ultimo termine di scadenza per l´invio è il 30.05.2024. Deadline for solution is the 30th. May 2024. Date limite pour la solution 30.05.2024. Las soluciones deben ser enviadas hasta el 30.05.2024. Beadási határidő 2024.05.30. 截止日期: 2024.05.30. – 请用徳语或英语回答 Διορία παράδοσης λύσης 30/05/2024. Παρακαλείστε να υποβάλετε τις λύσεις στα αγγλικά ή στα γερμανικά.
الموعد النهائي للتسليم هو 30/05/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرن
esperanto:
„Vidu, ĉifoje mi uzis la nombrojn 3, 4 kaj 5 laŭ alia maniero.“, diris Lisa. De A al B estas 3 cm. Tie estas orta angulo kaj plue 4 cm al C, post ĝi turnu ree dekstren al D (5 cm). De tie ĉio denove: turnu, 3 cm ktp.
La pentraĵon oni pludaŭru ĝis oni atingas la startpunkton A.
Kiom longa estas la tuta vojo ABC…A? 3 bluajn poentojn. Kiom grandaj estas areo kaj rando de la plej malgranda plulatero, kiu havas ĉiujn punktojn de la blua tasko kiel angulojn? 7 ruĝajn poentojn
La limtago por sendi viajn solvojn estas la 30-a de majo 2024. La solvojn skribu prefere en la germana, angla aŭ franca.
https://www.schulmodell.eu/3155-tasko-de-la-semajno-aufgabe-esperanto.html
arabisch-التمرين الإسبوعي:
قالت ليزا : "انظروا، لقد استخدمت الأرقام 3 و 4 و 5 بطريقة مختلفة تماماً ."
إن المسافة من النقطة A إلى النقطة B تساوي 3 سم ، ثم يأتي زاوية قائمة ونتجه إلى النقطة C (4 سم) ، ثم ننعطف بزاوية قائمة إلى النقطة D (5 سم).
ثم من النقطة D نبدأ من جديد. ننعطف 3 سم وهكذا.
يجب متابعة الرسم حتى نعود إلى النقطة A.
ما هو طول المسار الكامل ABC...A؟ 3 نقاط زرقاء.
ما هي مساحة ومحيط أصغر شكل متعدد الأضلاع يحتوي على جميع النقاط في المسألة الزرقاء كنقاط زوايا؟ 7 نقاط حمراء.
الموعد النهائي للتسليم هو /30/05/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.
https://www.schulmodell.eu/3150-arabisch-التمرين-الإسبوعي.html
griechisch:
"Κοιτάξτε, έχω χρησιμοποιήσει τους αριθμούς 3, 4 και 5 με εντελώς διαφορετικό τρόπο", είπε η Lisa. Είναι 3 εκατοστά από το Α στο Β. Στη συνέχεια υπάρχει μια ορθή γωνία και στο C (4 cm) στρίβεις πάλι δεξιά στο D (5 cm). Στη συνέχεια από το D και πάλι από μπροστά. Λυγίστε 3 εκατοστά και ούτω καθεξής.
Συνεχίστε το σχέδιο μέχρι να φτάσετε ξανά στο σημείο Α. Πόσο μακρύ είναι ολόκληρο το μήκος της γραμμής ABC...A; 3 μπλε κουκκίδες.
Ποιο είναι το εμβαδόν και η περίμετρος του μικρότερου πολυγώνου που έχει ως κορυφές όλα τα σημεία της μπλε εργασίας; 7 κόκκινες κουκκίδες
https://www.schulmodell.eu/3126-wochenaufgabe-griechisch.html
chin
第789题
“看,我用数字3、4和5做了完全不同的组合。” 丽莎说道。
如图: 从A到B是3厘米。然后直角转向到C,是4厘米长,再次直角转到D,是5厘米长。然后从D重新开始,直角转到E,长度是3厘米,以此类推。
图形继续延伸转角,直到回到点A。
那么整个ABC...A的长度是多少? 3个蓝色点。
所有蓝色任务中经过的点作为顶点,形成的最小多边形的面积和周长是多少? 7个红点。
截止日期: 2024.05.30. – 请用徳语或英语回答
https://www.schulmodell.eu/2952-woch-chin.html
rus
«Посмотрите, я использовала цифры 3, 4 и 5 совсем по-другому», — сказала Лиза. Расстояние от А до В составляет 3 см. Затем прямой угол и продолжаем до С (4 см), поворачиваем ещё раз под прямым углом до D (5 см). Потом начните снова с D. Поверните направо 3 см и так далее.
Рисование необходимо продолжать до тех пор, пока вы снова не дойдёте до точки А.
Какова длина всей линии ABC...A? 3 синих очка
Какова площадь и периметр наименьшего многоугольника, вершинами которого являются все точки синей задачи. 7 красных очков
hun
"Nézzétek, most teljesen másképp használtam a 3-as, 4-es és 5-ös számokat" – mondta Lisa. A-tól B-ig 3 cm. Ezután jön egy derékszög, és tovább a C pontig 4 cm, majd ismét derékszögben D (5 cm) felé fordulni. Aztán D-től megint kezdődik minden az elejétől. Fordulni, 3 cm és így tovább.
Folytasd a rajzot, amíg vissza nem érsz az A ponthoz. Milyen hosszú az egész ABC...A vonal? 3 kék pont.
Mi a legkisebb sokszög területe és kerülete, amely a kék feladat összes pontját csúcsként tartalmazza. 7 piros pont
https://www.schulmodell.eu/2648-a-h%C3%A9t-feladata.html
frz
« Regardez, j'ai utilisé les chiffres 3, 4 et 5 d'une manière complètement différente », a déclaré Lisa. De A à B, il y a 3 cm. Ensuite, il y a un angle droit et une continuation vers C (4 cm) à nouveau un angle droit vers D (5 cm). Puis on recommence à partir de D. Tourner de 3 cm et ainsi de suite.
Le dessin doit être continué jusqu'à ce qu’on atteigne le point A. Quelle est la longueur de la ligne entière ABC...A ? 3 points bleus.
Quels sont l'aire et le périmètre du plus petit polygone qui a tous les points de la partie bleu comme sommets. 7 points rouges
https://www.schulmodell.eu/2201-probleme-de-maths-de-la-semaine.html
esp
„789. tareas de puntuación
„Miren, he usado los números 3, 4 y 5 de una manera completamente diferente“, dijo Lisa. De A a B son 3 cm. Luego hay un ángulo recto y se sigue hasta C (4 cm), volviendo a girar en ángulo recto hacia D (5 cm). Luego, desde D, se empieza de nuevo. Girar 3 cm y así sucesivamente.
El dibujo debe continuar hasta que se vuelva al punto A. ¿Cuál es la longitud total del recorrido ABC...A? 3 puntos azules.
¿Cuál es el área y el perímetro del polígono más pequeño que tiene todos los puntos de la tarea azul como vértices? 7 puntos rojos.
https://www.schulmodell.eu/2412-ejercicio-de-matem%C3%A1ticas-semanal.html
en
‘Look, I've used the numbers 3, 4 and 5 in a completely different way,’ said Lisa. It's 3 cm from A to B. Then there is a right angle and on to C (4 cm) turn right again to D (5 cm). Then from D again from the front. Bend 3 cm and so on.
Continue the drawing until you reach point A again. How long is the entire line ABC...A? 3 blue points.
What is the area and perimeter of the smallest polygon that has all the points of the blue task as vertices? 7 red points
Deadline for solution is the 30th. May 2024.
https://www.schulmodell.eu/1453-this-weeks-maths-problem.html
it
"Ciao a tutti, ho usato i numeri 3, 4 e 5 in un modo completamente diverso," disse Lisa. Da A a B ci sono 3 cm. Poi si forma un angolo retto e si procede verso C (4 cm) per poi svoltare di nuovo ad angolo retto verso D (5 cm). Poi da D si ricomincia. Si svolta di 3 cm e così via. Il disegno deve continuare fino a tornare al punto A. Qual è la lunghezza totale del percorso ABC...A? 3 punti blu. Quali sono l'area e il perimetro del più piccolo poligono che contiene tutti i punti dell'esercizio blu come vertici? 7 punti rossi.
https://www.schulmodell.eu/1984-problema-di-matematica-della-settimana.html
Lösung/solution/soluzione/résultat/Решение:
E war nicht wirklich einfach, das kleinste 12-Eck zu finden, danke an alle die mir geschrieben haben, dass es eine schöne und herausfordernde Aufgabe ist/war.
Musterlösung von hirvi, danke. --> pdf <--
Aufgabe 10
790. Wertungsaufgabe
deu
„Das ist doch das gleiche Bild wie bei der vorherigen Aufgabe.“, sagte Mike zu Lisa. „Das stimmt, aber ich möchte jetzt mal überlegen, ob der Streckenzug auch wieder irgendwann bei A endet, wenn ich statt 3 cm = a cm, statt 4 cm = b cm und statt 5 cm = c cm verwende.“ Die 90° Winkel und die Richtungswechsel bleiben. Die Werte für a, b und c sind beliebig, aber a sei kleiner als b und b kleiner als c. (Eventuell auch die Aufgabe 789 noch einmal lesen.)
Wie geht Lisas Überlegung aus? Führt eine solche Konstruktion immer zum Punkt A zurück – Begründung und falls ja, wie lang ist der gesamte Streckenzug ABC...A? 5 blaue Punkte.
Wenn man nun doch wieder mit 3, 4, 5 startet, kann man dann mit einem anderen immer gleichen Winkel (kein ganzzahliges Vielfaches von 90°) irgendwann mal wieder beim Punkt A „ankommen“? Für das Finden eines solchen Winkels oder dem Zeigen, dass es keinen solchen Winkel gibt, werden 8 rote Punkte vergeben.
https://www.schulmodell.eu/aufgabe-der-woche.html
Termin der Abgabe 06.06.2024. Limtago por sendi viajn solvojn estas la 6-a de junio 2024. Срок сдачи 06.06.2024. Ultimo termine di scadenza per l´invio è il 06.06.2024. Deadline for solution is the 6th. June 2024. Date limite pour la solution 06.06.2024. Soluciones hasta el 06.06.2024. Beadási határidő 2024.06.06. 截止日期: 2024.06.06. – 请用徳语或英语回答 Διορία παράδοσης λύσης 06/06/2024. Παρακαλείστε να υποβάλετε τις λύσεις στα αγγλικά ή στα γερμανικά.
الموعد النهائي للتسليم هو 06/06/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.
esperanto:
„Tio ja estas la sama bildo kiel ĉe la antaŭa tasko.“, diris Mike al Lisa. „Tio ĝustas, sed mi volas nun cerbumi, ĉu la strekaro iam finiĝas en la punkto A, se mi anstataŭ 3 cm = a cm, anstataŭ 4 cm = b cm kaj anstataŭ 5 cm = c cm uzas. La 90°-anguloj kaj la ŝanĝoj de la direkto restas samaj. La valoroj a, b kaj c estas laŭvolaj, sed a estu pli malgranda ol b kaj b pli malgranda ol c. (Eventuale denove legu la taskon 789.)
Kion rezulton la pansado de Lisa havos? Ĉu la strekaro reiras al la punkto A — argumentado kaj se jes, kiom longa estas la tuta strekaro ABC…A? 5 bluaj poentoj.
Se oni denove komencas per 3, 4, 5, ĉu oni povas reiri al A per ĉiam ŝanĝi la direkton je sama angulo (sed ne multoblo de 90°)? Por trovi unu tian angulon aŭ provo ke neniu tia ekzistas vi ricevos 8 ruĝajn poentojn.
La limtago por sendi viajn solvojn estas la 6-a de junio 2024. La solvojn skribu prefere en la germana, angla aŭ franca.
https://www.schulmodell.eu/3155-tasko-de-la-semajno-aufgabe-esperanto.html
arabisch-التمرين الإسبوعي:
قال مايك إلى ليزا: "هذه نفس الصورة كما في التمرين السابق."
أجابت ليزا: "هذا صحيح، لكنني أريد الآن التفكير فيما إذا كانت نهاية المسار أيضًا هي النقطة A،
إذا استخدمت بدلاً من 3 سم = a سم، وبدلاً من 4 سم = b سم، وبدلاً من 5 سم = c سم
علما بأنه لم يحدث أي تغير على الزوايا 90 درجة أو على الاتجاهات .
المتغيرات a و b و c يمكن أن تأخذ أي قيمة عشوائية، لكن a يجب أن تكون أقل من b و b أقل من c . " a<b<c " .
من المستحسن أن تقرأ التمرين السابق 789 مرة أخرى.
هل ما تفكر به ليزا صحيح ؟ هل يؤدي مثل هذا النموذج دائمًا إلى العودة إلى النقطة A ؟ مع التبرير وإذا كان الأمر كذلك، فما هو طول المسار بالكامل ABC...A؟ 5 نقاط زرقاء.
إذا استخدمت مجددًا الأطوال 3، 4، 5، هل من الممكن مع زاوية مختلفة ثابتة (ليست مضاعفًا صحيحًا لـ 90 درجة) العودة إلى النقطة A في النهاية؟
ستحصل على ثمانية نقاط حمراء إذا استطعت إيجاد قيمة هذه الزاوية أو أثبت أنه لا توجد أي زاوية تحقق ذالك.
الموعد النهائي للتسليم هو /06/06/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.
https://www.schulmodell.eu/3150-arabisch-التمرين-الإسبوعي.html
griechisch:
"Αυτή είναι η ίδια εικόνα με την προηγούμενη εργασία", είπε ο Mike στη Lisa. "Σωστά, αλλά θα ήθελα να σκεφτώ αν η γραμμή καταλήγει πάλι στο Α σε κάποιο σημείο, αν χρησιμοποιήσω a cm αντί για 3 cm, b cm αντί για 4 cm και c cm αντί για 5 cm". Η γωνία 90° και η αλλαγή κατεύθυνσης παραμένουν. Οι τιμές για τα a, b και c είναι αυθαίρετες, αλλά ας είναι το a μικρότερο από το b και το b μικρότερο από το c. (Μπορεί επίσης να θέλετε να ξαναδιαβάσετε την άσκηση 789).
Πώς λειτουργεί ο συλλογισμός της Lisa; Μια τέτοια κατασκευή οδηγεί πάντα πίσω στο σημείο Α - αιτιολόγηση και αν ναι, πόσο μεγάλη είναι ολόκληρη η γραμμή ABC...A; 5 μπλε κουκκίδες: 5 μπλε κουκκίδες: 5 μπλε κουκκίδες: 5 μπλε κουκκίδες: 5 μπλε κουκκίδες.
Αν ξεκινήσετε πάλι με 3, 4, 5, μπορείτε να "φτάσετε" στο σημείο Α πάλι σε κάποιο σημείο με μια άλλη γωνία που είναι πάντα η ίδια (όχι ακέραιο πολλαπλάσιο των 90°); Για την εύρεση μιας τέτοιας γωνίας ή την απόδειξη ότι δεν υπάρχει τέτοια γωνία, απονέμονται 8 κόκκινοι κουκκίδες.
https://www.schulmodell.eu/3126-wochenaufgabe-griechisch.html
chin
第790题
“这和上一道题是一样的图。” 迈克对丽莎说道。
“没错,但我现在想考虑一下,如果我用a厘米代替3厘米,用b厘米代替4厘米,用c厘米代替5厘米,那么这条线路是否最终还会回到A点?” 丽莎说道。
90°的角度和转向是保持不变的。
a、b和c的值是任意的,但是a应该小于b,b应该小于c。(如果需要可重新阅读789题)
丽莎的考虑结果如何?这样的构图是否总会回到原点A处?
如果是,请说明理由。 并计算总的ABC...A线路长度是多少?5个蓝点。
如果现在再从3、4、5开始,那么是否可以找到一个不是90°,但是始终相同的角,使之最终再回到点A处?
如果存在这样的一个角度,请找出来; 如果不存在这样的角度,请证明不存在。 8个红点。
截止日期: 2024.06.06. – 请用徳语或英语回答
https://www.schulmodell.eu/2952-woch-chin.html
rus
«Ведь это та же картина, что и в предыдущей задаче», — сказал Майк Лизе. «Это правда, но теперь мне хотелось бы подумать, закончится ли линия снова в какой-то момент на А, если я буду использовать а см вместо 3 см, b см вместо 4 см и с см вместо 5 см». Углы 90° и изменения направления сохраняются. Значения a, b и c произвольны, но пусть a меньше b, а b меньше c. (Пожалуй, вам ещё раз прочитать задачу 789.)
Как кончатся рассуждения Лизы? Всегда ли такая конструкция ведёт обратно к точке А - обоснование, и если да, то какова длина всего пути ABC...A? 5 синих очков.
Если вы начнёте снова с 3, 4, 5, а вместо прямого угла возьмёте другой всегда один и тот же угол (не целократный к 90°), сможете ли вы затем снова когда-нибудь «прийти» в точку А? За нахождение такого угла или доказательство того, что такого угла не существует, получите 8 красных очков.
hun
„Ez ugyanaz a kép, mint az előző feladatnál - mondta Mike Lisának. „Így van, de szeretném átgondolni, hogy a vonal valamikor megint A-nál végződik-e, ha 3 cm helyett a cm-t, 4 cm helyett b cm-t és 5 cm helyett c cm-t használok.” A 90°-os szög és az irányváltoztatás megmarad. Az a, b és c értékek tetszőlegesek, de a legyen kisebb, mint b, és b kisebb, mint c. (Érdemes újra elolvasni a 789. feladatot is).
Hogyan működik Lisa gondolatmenete? Visszavezet egy ilyen konstrukció mindig az A ponthoz - igazolás, ha igen, milyen hosszú az egész ABC...A sor? 5 kék pont.
Ha most újra 3, 4, 5-tel kezdjük, akkor „megérkezhetünk” az A pontba egy másik szög felhasználásával, úgy hogy a szög mindig ugyanaz marad (de nem a 90° egész számú többszöröse)? 8 piros pontot kaptok, ha ilyen szöget találtok, vagy ha megmutatjátok, hogy nincs ilyen szög.
https://www.schulmodell.eu/2648-a-h%C3%A9t-feladata.html
frz
"C'est la même image que l‘exercice précédent", a déclaré Mike à Lisa. "C'est vrai, mais j'aimerais maintenant voir si la ligne se terminera à nouveau en A à un moment donné si j'utilise 3cm = maintenant a cm, 4cm = maintenant b cm et 5cm = maintenant c cm." Les angles de 90° et les changements de direction demeurent. Les valeurs de a, b et c sont arbitraires, mais laissez a sera plus petit que b et b plus petit que c. (Vous voudrez peut-être aussi relire l’exercice 789.)
Comment se déroule le raisonnement de Lisa ? Une telle construction ramène-t-elle toujours au point A - justification et si oui, quelle est la longueur de l'ensemble du parcours ABC...A ? 5 points bleus.
Si on recommence avec 3, 4, 5, peut-on alors « arriver » à nouveau au point A à un moment donné avec un angle différent mais toujours le même taille (pas un multiple entier de 90°) ? Pour avoir trouvé un tel angle ou montré qu'un tel angle n'existe pas, 8 points rouges sont attribués.
https://www.schulmodell.eu/2201-probleme-de-maths-de-la-semaine.html
esp
„790. tareas de puntuación
„Ese es la misma imagen que en el ejercicio anterior“, dijo Mike a Lisa. „Eso es cierto, pero ahora quiero ver si el recorrido de la línea en algún momento también termina en A, si uso en lugar de 3 cm = a cm, en lugar de 4 cm = b cm, y en lugar de 5 cm = c cm.“ Los ángulos de 90° y las direcciones no cambian. Los valores de a, b y c son libres, pero a debe ser menor que b y b menor que c. (Quizás deberías leer el ejercicio 789 nuevamente).
¿Cuál es la ideavde Lisa? ¿Lleva siempre tal "construcción" de vuelta al punto A? – Justifica y, en caso afirmativo, ¿cuál es la longitud total del recorrido ABC...A? 5 puntos azules.
Si volvemos a empezar con 3, 4, 5, ¿se puede "llegar" en algún momento al punto A con otro ángulo siempre igual (que no sea un múltiplo entero de 90°)? Se otorgan 8 puntos rojos por encontrar tal ángulo o por demostrar que no existe un ángulo así.
https://www.schulmodell.eu/2412-ejercicio-de-matem%C3%A1ticas-semanal.html
en
‘That's the same picture as in the previous task,’ Mike said to Lisa. ‘That's right, but I'd like to think about whether the line ends at A again at some point if I use a cm instead of 3 cm, b cm instead of 4 cm and c cm instead of 5 cm.’ The 90° angle and the change of direction remain. The values for a, b and c are arbitrary, but let a be smaller than b and b smaller than c. (You may also want to re-read exercise 789).
How does Lisa's reasoning work? Does such a construction always lead back to point A - justification and if so, how long is the entire line ABC...A? 5 blue points.
If you start again with 3, 4, 5, can you ‘arrive’ at point A again at some point with another angle that is always the same (not an integer multiple of 90°)? For finding such an angle or showing that there is no such angle, 8 red points are awarded.
Deadline for solution is the 6th. June 2024.
https://www.schulmodell.eu/1453-this-weeks-maths-problem.html
it
"C'è la stessa immagine del compito precedente", disse Mike a Lisa. "È vero, ma ora voglio considerare se il percorso tornerà di nuovo a A se invece di 3 cm uso a cm, invece di 4 cm uso b cm e invece di 5 cm uso c cm." Gli angoli di 90° e i cambi di direzione rimangono. I valori di a, b e c sono arbitrari, ma a è minore di b e b è minore di c. (Eventualmente rileggere anche il compito 789.)
Qual è la conclusione di Lisa? Una tale costruzione conduce sempre al punto A – motivazione e, se sì, qual è la lunghezza totale del percorso ABC...A? 5 punti blu.
Se si riparte con 3, 4, 5, è possibile tornare al punto A con un altro angolo sempre uguale (che non sia un multiplo intero di 90°)? Per trovare un tale angolo o dimostrare che non esiste, vengono assegnati 8 punti rossi.
https://www.schulmodell.eu/1984-problema-di-matematica-della-settimana.html
Lösung/solution/soluzione/résultat/Решение:
Aufgabe 11
791. Wertungsaufgabe
deu
„Ihr kennt ja die Fibonacci-Reihe, oder?“, fragte der Opa von Bernd und Maria. „Aber klar doch. Man startet mit den Zahlen 1 und 1. Die beiden Zahlen werden addiert und ergeben 2. Die nächste Zahl ist dann 3, weil 1+2=3, dann kommt 5 wegen 2+3. Die ersten Zahlen der Folge sind also 1, 1, 2, 3, 5, 8, 13, 21, 34, ...“, sagte Maria sofort. „Stimmt.“
Man kann die Regel auch auf andere Startpaare anwenden.
2, 8 wird dann zu 2, 8, 10, 18, 28, 46, 74, … Das Besondere hier ist, dass die 2 und die 8 die Ziffern einer Zahl der Folge sind, nämlich der 28.
Zu finden ist ein Startpaar a, b, so dass die Zahl ab zur Folge gehört, aber kleiner ist als 28 – 3 blaue Punkte (a ungleich Null)
Zu finden ist ein Startpaar a, b, so dass die Zahl ab zur Folge gehört, aber möglichst groß ist. – 3 rote Punkte
(Anmerkung: Die Untersuchung für a, b einstellig ist völlig okay - ausreichend)
https://www.schulmodell.eu/aufgabe-der-woche.html
Termin der Abgabe 13.06.2024. Limtago por sendi viajn solvojn estas la 13-a de junio 2024. Срок сдачи 13.06.2024. Ultimo termine di scadenza per l´invio è il 13.06.2024. Deadline for solution is the 13th. June 2024. Date limite pour la solution 13.06.2024. Soluciones hasta el 13.06.2024. Beadási határidő 2024.06.13. 截止日期: 2024.06.13. – 请用徳语或英语回答 Διορία παράδοσης λύσης 13/06/2024. Παρακαλείστε να υποβάλετε τις λύσεις στα αγγλικά ή στα γερμανικά.
الموعد النهائي للتسليم هو 13/06/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.
esperanto:
„Vi ja konas la serion de Fibonacci, ĉu ne?“, demandis la avo de Bernd kaj Maria. „Jes, certe. Oni komencas per la nombroj 1 kaj 1. La du nombroj estas adiciataj kaj la rezulto estas 2. La sekva nombro estas 1+2=3, la pli sekva 5 pro 2+3=5. La unuaj nombroj de la serio estas 1, 1, 2, 3, 5, 8, 13, 21, 34, …“, tuj diris Maria. „Ĝuste.“
Oni povas apliki la regulon ankaŭ pri aliaj komencaj duopoj.
2, 8 fariĝas 2, 8, 10, 18, 28, 46, 74, … La specifa eco estas, ke 2 kaj 8 estas la ciferoj de unu nombro de la serio, nome de la nombro 28.
Trovu komencan duopon a, b, tiel ke la nombro ab estas ero de la serio, sed la nombro ab < 28. — 3 bluaj poentoj
Trovu komencan duopon a, b, tiel ke la nombro ab estas ero de la serio, sed la nombro ab estu laŭeble plej granda. — 3 ruĝaj poentoj
La limtago por sendi viajn solvojn estas la 13-a de junio 2024. La solvojn skribu prefere en la germana, angla aŭ franca.
https://www.schulmodell.eu/3155-tasko-de-la-semajno-aufgabe-esperanto.html
arabisch-التمرين الإسبوعي:
سأل الجد بيرند وماريا : هل تعرفان سلسلة فيبوناتشي؟
أجابت ماريا على الفور : بالطبع نعرفها.
تبدأ السلسلة بزوج من الأرقام مثلا 1 و 1 . يتم جمع الرقمين معا للحصول على 2.
الرقم التالي هو 3 لأن حاصل جمع الواحد مع الاثنان هو ثلاثة .
الرقم الذي يليه هو 5 لأن حاصل جمع الاثنان مع الثلاثة هو خمسة.
الأرقام الأولى في السلسلة هي
1 |
1 |
2 |
3 |
5 |
8 |
13 |
21 |
34 |
...... |
يمكن تطبيق القاعدة أيضًا على أزواج أخرى.
مثلا الزوج 2 و 8
2 |
8 |
10 |
18 |
28 |
46 |
74 |
...... |
المميز في هذه السلسلة هو أن 2 و 8 هما أرقام لعدد من السلسلة وهو العدد 28.
الطلب الأول: هو العثور على زوج من رقمين (a,b) بحيث يكون
- العدد ab ينتمي للسلسلة
- العدد ab أقل من 28
- a لا تساوي الصفر
3 نقاط زرقاء
الطلب الثاني : هو العثور على زوج من رقمين (a,b) بحيث يكون العدد ab ينتمي للسلسلة، ولكن يكون كبيرًا قدر الإمكان
3 نقاط حمراء.
الموعد النهائي للتسليم هو /13/06/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.
https://www.schulmodell.eu/3150-arabisch-التمرين-الإسبوعي.html
griechisch:
«Ξέρεις τη σειρά Φιμπονάτσι, έτσι δεν είναι;» ρώτησε ο παππούς του Bernd και της Maria. «Φυσικά και ξέρεις. Ξεκινάς με τους αριθμούς 1 και 1. Οι δύο αριθμοί προστίθενται μαζί και κάνουν το 2. Ο επόμενος αριθμός είναι τότε το 3, γιατί 1+2=3, μετά έρχεται το 5 λόγω του 2+3. Έτσι οι πρώτοι αριθμοί της σειράς είναι οι εξής: 1, 1, 2, 3, 5, 8, 13, 21, 34, ...", είπε αμέσως η Maria. «Σωστά».
Μπορείτε επίσης να εφαρμόσετε τον κανόνα και σε άλλα αρχικά ζεύγη.
Το 2, 8 γίνεται τότε 2, 8, 10, 18, 28, 46, 74, ... Το ιδιαίτερο εδώ είναι ότι το 2 και το 8 είναι τα ψηφία ενός αριθμού της ακολουθίας, δηλαδή του 28.
Βρείτε ένα αρχικό ζεύγος a, b έτσι ώστε ο αριθμός ab να ανήκει στην ακολουθία αλλά να είναι μικρότερος από 28 - 3 μπλε κουκκίδες (a μη ίσο με μηδέν)
Βρείτε ένα αρχικό ζεύγος a, b έτσι ώστε ο αριθμός ab να ανήκει στην ακολουθία αλλά να είναι όσο το δυνατόν μεγαλύτερος. - 3 κόκκινες κουκκίδες
https://www.schulmodell.eu/3126-wochenaufgabe-griechisch.html
chin
第791题
“你们知道斐波那契数列吗?” 伯恩德和玛丽雅的爷爷问道。
“当然知道。从1和1开始,这两个数字相加得到2。下一个数字是3,因为1+2等于3。然后是5,因为2+3等于5。所以数列的前几个数字是1、1、2、3、5、8、13、21、34……。” 玛丽雅立刻回答说。
“没错。”
现在可以将规则应用到其它的一对起始数字上。
例如: 2、8会变成2、8、10、18、28、46、74…… 。这里的特殊之处在于2和8是数列中某个数字的位数,即28。
找到一对儿起始数字a、b,使得ab是数列中的一个数字,但小于28。 -3个蓝点(其中a不等于零)。
找到一对儿起始数字a、b,使得ab是数列中的一个数字,但尽可能大。- 3个红点。
截止日期: 2024.06.13. – 请用徳语或英语回答
https://www.schulmodell.eu/2952-woch-chin.html
rus
«Вы знаете ряд Фибоначчи, верно?» — спросил дедушка Бернда и Марии. «Начинаешь с чисел 1 и 1. Эти два числа складываются вместе и дают 2. Следующее число - 3, потому что 1+2=3, затем получается 5, потому что 2+3=5. Итак, первые числа в последовательности — 1, 1, 2, 3, 5, 8, 13, 21, 34,…» — сразу же сказала Мария. «Правильно.»
Вы также можете применить это правило и к другим стартовым парам одноразрядных чисел.
Из пары 2, 8 получается последовательность 2, 8, 10, 18, 28, 46, 74... Особенностью здесь является то, что числа 2 и 8 являются цифрами одного числа в последовательности, а именно 28.
Найти стартовую пару a, b одноразрядных чисел так, чтобы число ab принадлежало к последовательности, но было меньше 28 – 3 синих очка (a не равно нулю)
Найти стартовую пару a, b одноразрядных чисел так, чтобы число ab принадлежало к последовательности, но было наибольшим. – 3 красных очка
hun
"Ismeritek a Fibonacci-sorozatot, ugye?" – kérdezte Bernd és Mária nagypapája. "Természetesen. Két 1-es számmal kezdődik. A két számot összeadjuk, és az összeg 2. A következő szám utána 3, mert 1+2=3, majd jön 5 a 2+3 miatt. Tehát a sorozat első számai: 1, 1, 2, 3, 5, 8, 13, 21, 34, ...", mondta Mária azonnal. - Úgy van.
A szabályt más kezdő párokra is alkalmazhatjuk.
Ha 2, 8 ekkor 2, 8, 10, 18, 28, 46, 74, ... A különleges dolog itt az, hogy a 2 és a 8 a sorozat egy számának, nevezetesen a 28-nak a számjegyei.
Találj egy a, b kezdőpárt, ahol az ab szám a sorozathoz tartozik, de kisebb, mint 28 – 3 kék pont (a nem egyenlő nullával)
Találj egy kezdő párt a, b, ahol az ab szám a sorozathoz tartozik, de a lehető legnagyobb. – 3 piros pont
https://www.schulmodell.eu/2648-a-h%C3%A9t-feladata.html
frz
"Vous connaissez la série de Fibonacci, n'est-ce pas ?", a demandé le grand-père de Bernd et Maria. "Mais bien sûr. On commence par les nombres 1 et 1. Les deux nombres s’additionnent et donnent 2. Le nombre suivant est alors 3 car 1+2=3, puis il y a 5 à cause de 2+3. Donc les premiers nombres de la séquence sont 1, 1, 2, 3, 5, 8, 13, 21, 34,… », dit immédiatement Maria. "Vrai."
On peut également appliquer la règle à d’autres paires de départ.
2, 8 devient alors 2, 8, 10, 18, 28, 46, 74, ... La particularité ici est que le 2 et le 8 sont les chiffres d'un nombre dans la suite, à savoir 28.
Il faut trouver une paire de départ a, b, pour que le nombre ab appartienne à la séquence, mais soit inférieur à 28 - 3 points bleus (a différent de zéro)
Une paire de départ a, b doit être trouvée pour que le nombre ab appartienne à la séquence, mais soit aussi grand que possible. – 3 points rouges
https://www.schulmodell.eu/2201-probleme-de-maths-de-la-semaine.html
esp
„791. tareas de puntuación
"¿Conocéis la serie de Fibonacci, verdad?", preguntó el abuelo de Bernd y Maria. "Claro que sí. Se empieza con los números 1 y 1. Estos dos números se suman y dan como resultado 2. El siguiente número es 3, porque 1+2=3, luego viene 5 porque 2+3=5. Los primeros números de la serie son entonces 1, 1, 2, 3, 5, 8, 13, 21, 34, ...", dijo Maria inmediatamente. "Correcto." Se puede aplicar la regla también a otras parejas de inicio. 2, 8 se convierte entonces en 2, 8, 10, 18, 28, 46, 74, ... Lo especial aquí es que el 2 y el 8 son las cifras de un número de la serie, es decir, el 28. Se trata de encontrar una pareja de inicio a, b, de modo que el número ab pertenezca a la serie, pero sea menor que 28 – 3 puntos azules (a diferente de cero). Se trata de encontrar una pareja de inicio a, b, de modo que el número ab pertenezca a la serie, pero que sea lo más grande posible. – 3 puntos rojos
https://www.schulmodell.eu/2412-ejercicio-de-matem%C3%A1ticas-semanal.html
en
“You know the Fibonacci series, don't you?” asked Bernd and Maria's grandpa. “Of course you do. You start with the numbers 1 and 1. The two numbers are added together and make 2. The next number is then 3, because 1+2=3, then comes 5 because of 2+3. So the first numbers in the sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34, ...", said Maria immediately. “That's right.”
You can also apply the rule to other starting pairs.
2, 8 then becomes 2, 8, 10, 18, 28, 46, 74, ... The special thing here is that the 2 and the 8 are the digits of a number in the sequence, namely 28.
Find a starting pair a, b, so that the number ab belongs to the sequence, but is smaller than 28 - 3 blue points (a not equal to zero)
Find a starting pair a, b so that the number ab belongs to the sequence but is as large as possible. - 3 red points
Deadline for solution is the 13th. June 2024.
https://www.schulmodell.eu/1453-this-weeks-maths-problem.html
it
"Certo che conoscete la sequenza di Fibonacci, vero?", chiese il nonno di Bernd e Maria. "Ma certo. Si inizia con i numeri 1 e 1. I due numeri vengono sommati e danno 2. Il numero successivo è poi, perché 1+2=3, poi viene 5 perché 2+3. I primi numeri della sequenza sono quindi 1, 1, 2, 3, 5, 8, 13, 21, 34, ...", disse subito Maria. "Giusto."
Si può applicare la regola anche a altre coppie di partenza.
2, 8 diventa poi 2, 8, 10, 18, 28, 46, 74, ... La particolarità qui è che il 2 e l'8 sono le cifre di un numero della sequenza, cioè il 28.
Si deve trovare una coppia iniziale a, b, in modo che il numero ab appartenga alla sequenza, ma sia minore di 28 - 3 punti blu (a diverso da zero).
Si deve trovare una coppia iniziale a, b, in modo che il numero ab appartenga alla sequenza, ma sia il più grande possibile - 3 punti rossi.
https://www.schulmodell.eu/1984-problema-di-matematica-della-settimana.html
Lösung/solution/soluzione/résultat/Решение:
Mit Hilfe eines kleinen Programms oder einer Kalkulationstabelle sind für einstellige Werte von a und b die möglichen Ergebnisse schnell gefunden:
1, 4, 5, 9, 14 erfüllt die blaue Aufgabe
1, 9, 10, 19 erfüllt die blaue Aufgabe ebenfalls, wo die Angabe eines Startpaares ausreichte
2, 8, 10, 18, 28 war gegben
4, 7, 11, 18, 29, 47
6, 1, 7, 8, 15, 23, 38, 61
7, 5, 12, 17, 29, 46, 75 hier noch die Lösung für rot
Interessant auch die Startpaare - einfach mal Probieren:
203 und 8624
1045 und 1854
Es gibt noch viele weitere große Startpaare.
Aufgabe 12
792. Wertungsaufgabe
deu
Dürerbuchstabe
„Hallo Opa, da hast du uns ja wieder einen schönen Buchstaben mitgebracht“, sagten Maria und Bernd. „Die Konstruktion sieht aber nicht gerade einfach aus“, meinte Mike. „Stimmt!“
Begonnen wird mit einem Quadrat ABCD mit der Seitenlänge a (hier ist a = 10 cm). Die Punkte E, F, G und H sind die Mittelpunkte der Seiten des Quadrats. Die Mittelpunkte werden miteinander verbunden und führen zum Punkt I. Die Punkte S und N haben einen Abstand von a/30 zu den Seiten. Der Punkt J hat einen Abstand von a/30 zu I. Der Punkt M hat einen Abstand von a/10 zu I.
(Achtung, JM=a/10 sieht besser aus. Wer möchte, kann mir dafür die Lösung schicken. Natürlich reich eine Lösung.)
Damit man die blauen und grünen Kreise zeichnen kann, muss man deren Mittelpunkte P, Q, U bzw. T konstruieren. Die Kreise mit den Mittelpunkten V bzw. E_1 haben jeweils einen Radius von a/10. Wie die Punkte der rechtwinkligen Dreiecke konstruiert werden, die die Spitzen des Buchstabens bilden, kann man in der Zeichnung gut erkennen.
Wie groß sind Flächeninhalt und Umfang der blauen und grünen Kreise? Kompletter Rechenweg - 8 blaue Punkte
Wie groß sind Umfang und Flächeninhalt des Dreiecks A_1 F_1 D_1? Lösung durch Berechnung 8 rote Punkte (Alternativ würde eine konstruktive Lösung mit 4 roten Punkte bewertet werden.)
https://www.schulmodell.eu/aufgabe-der-woche.html
Termin der Abgabe 11.7.2024. Limtago por sendi viajn solvojn estas la 11-a de julio 2024. Срок сдачи 11.07.2024. Ultimo termine di scadenza per l´invio è il 11.07.2024. Deadline for solution is the 11th. July 2024. Date limite pour la solution 11.07.2024. Soluciones hasta el 13.06.2024. Beadási határidő 2024.07.11. 截止日期: 2024.07.11. – 请用徳语或英语回答 Διορία παράδοσης λύσης 11/07/2024. Παρακαλείστε να υποβάλετε τις λύσεις στα αγγλικά ή στα γερμανικά.
الموعد النهائي للتسليم هو 11/07/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.
esperanto:
Dürer-litero:
„Saluton avo, vi alportis denove belan literon“, diris Maria kaj Bernd. „Sed la konstruado ŝajnas esti malfacila“, opiniis Mike. „Ĝuste!“
Oni komencas per la kvadrato ABCD kun la longeco a de la lateroj (ĉi tie estas a = 10 cm). La punktoj E, F, G kaj H estas la mezaj punktoj de la lateroj de la kvadrato. La mezaj punktoj estas kunligitaj kaj difinas la punkton I. La punktoj S kaj N havas la distancon a/30 de la lateroj. La punkto J havas la distancon a/30 de I. La punkto M havas la distancon a/10 de I. Por konstrui la bluajn kaj verdajn cirklojn oni bezonas iliajn mezajn punktojn P, Q, U kaj T. La cirkloj kun la mezaj punktoj V respektive E_1 havas ĉiu la radiuson a/10. Kiel la punkto de la ortangulaj trianguloj estas konstruitaj (la trianguloj formas la pintojn de la litero), estas bone videbla en la skizo.
Kiom grandaj estas la areoj kaj la perimetroj de la bluaj kaj verdaj cirkloj?
kompleta kalkulado — 8 bluaj poentoj
Kiom grandaj estas la areo kaj la perimetro de la triangulo A_1 F_1 D_1?
solvo per kalkulado — 8 ruĝaj poentoj (alternative vi ricevos 4 ruĝajn poentojn por konstrua solvo)
La limtago por sendi viajn solvojn estas la 11-a de julio 2024. La solvojn skribu prefere en la germana, angla aŭ franca.
https://www.schulmodell.eu/3155-tasko-de-la-semajno-aufgabe-esperanto.html
arabisch-التمرين الإسبوعي:
. :قالت ماريا وبرند السالم عليكم يا جدي، لقد جلبت لنا حرفا ًجميال ًمرة أخرى ولكن يبدو أن رسم
.ًالمخطط لهذا الحرف ليس سهال ًأبدا
:هذا صحيح قال مايك. !
البداية تكون برسم المربعABCD.
ليكن طول ضلع المربعa = 10 cm.
النقاطE, F, G , Hهي منصفات أضالع.المربع
النقطةIهي نقطة تالقي القطع المستقيمةHF , GH.
تبعد النقطتانS,Nمسافةa/30عن أضالع المربعAB , DC.
تبعد النقطةJعن النقطةIمسافةa/30.
تبعد النقطةMعن النقطةIمسافةa/10.
حتىنرسم الدوائر الزرقاء والخضراء ، يجب تحديد مراكزهاP, Q, U, T.
نصف قطر الدائرة التي مراكزهاVيساويa/10.
نصف قطر الدائرة التي مراكزهاE1يساويa/10.
من الرسم يمكننا بوضوح رؤية كيفية تحديد النقاط التي تشكل زوايا المثلثين القائمين اللذين يشكالن
.طرفي الحرف
:المطلوب
ما هي مساحة ومحيط الدوائر الزرقاء والخضراء؟ ثمانية نقاط زرقاء في حال تم تسليم الحل كامال و
مفصال
ما هو محيط ومساحة المثلثA1 F1 D1؟
إذا تم تسليم الحل عن طريق الحساب ، ستحصل علىثمانية نقاط حمراء
( إذا تم تسليم الحل عن طريق البناءأي أن نستخدم الرسوم أو البراهين الهندسية إلنشاء األشكال
) المطلوبة وحل المسألة، ستحصل على أربعةنقاط حمراء
الموعد النهائي للتسليم هو /11/07/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.
https://www.schulmodell.eu/3150-arabisch-التمرين-الإسبوعي.html
griechisch:
«Γεια σου παππού, μας έφερες άλλο ένα όμορφο γράμμα», είπαν η Maria και ο Bernd. «Αλλά η κατασκευή δεν φαίνεται ακριβώς εύκολη», είπε ο Mike. «Σωστά!»
Ξεκινήστε με ένα τετράγωνο ABCD με μήκος πλευράς a (εδώ a = 10 cm). Τα σημεία E, F, G και H είναι τα κέντρα των πλευρών του τετραγώνου. Τα κεντρικά σημεία ενώνονται μεταξύ τους και οδηγούν στο σημείο Ι. Τα σημεία S και Ν βρίσκονται σε απόσταση α/30 από τις πλευρές. Το σημείο J έχει απόσταση α/30 από το Ι. Το σημείο Μ έχει απόσταση α/10 από το Ι. Για να σχεδιάσετε τους μπλε και πράσινους κύκλους, πρέπει να κατασκευάσετε τα κέντρα τους P, Q, U και T αντίστοιχα. Οι κύκλοι με κέντρα V και E_1 έχουν έκαστος ακτίνα α/10. Το σχέδιο δείχνει καθαρά πώς να κατασκευάσετε τα σημεία των ορθογώνιων τριγώνων που αποτελούν τις κορυφές του γράμματος.
Ποιο είναι το εμβαδόν και η περίμετρος του μπλε και του πράσινου κύκλου; Πλήρης αριθμητική διαδρομή - 8 μπλε κουκκίδε
Ποια είναι η περίμετρος και το εμβαδόν του τριγώνου A_1 F_1 D_1; Λύση με υπολογισμό 8 κόκκινες κουκκίδες (Εναλλακτικά, μια εποικοδομητική λύση θα μπορούσε να λάβει 4 κόκκινες κουκκίδες).
https://www.schulmodell.eu/3126-wochenaufgabe-griechisch.html
chin
第792题
丟勒字母
“爷爷,你好!你又给我们带来了一个漂亮的字母。” 玛丽雅和贝恩德说。
“这个构图看起来并不简单。 ” 迈克说。
“是的!”
从一个边长为a的正方形ABCD开始, 这里的a = 10厘米。
点E、F、G和H是正方形各边儿的中点。把中点连接起来得到了交点I。点S和点N到两边儿的距离都是为a/30。点J到点I的距离也为a/30。点M到点I的距离为a/10。
点P、T 是蓝色圆的圆心,点Q、 U是绿色圆的圆心。以点V和点E1为圆心的圆的半径均为a/10。
在图中可以清楚地看到如何构造字母尖端那个直角三角形的点。
蓝色和绿色圆的面积和周长是多少?需要完整的计算过程 - 8个蓝点
三角形A_1 F_1 D_1的周长和面积是多少?通过计算得到结果 - 8个红点。 也可以用构图法解决这个问题, 但是得到4个红点。
Termin der Abgabe 11.07.2024.
截止日期: 2024.07.11. – 请用徳语或英语回答
https://www.schulmodell.eu/2952-woch-chin.html
rus
Буква Дюрера
«Здравствуй, дедушка, ты опять принёс нам одну прекрасную букву», — сказали Мария и Бернд. «Построение не выглядит особенно простым», — сказал Майк. «Действително!»
Начнём с квадрата ABCD со стороной a (здесь a = 10 см). Точки E, F, G и H являются серединами сторон квадрата. Эти точки соединены между собой и ведут к точке I. Точки S и N находятся на расстоянии а/30 от сторон. Расстояние от точки J до I равно a/30. Расстояние от точки M до I составляет a/10. Чтобы нарисовать синие и зелёные круги, вам нужно построить их центры P, Q, U и T, соответственно. Каждый круг с центрами V и E1 имеет радиус a/10. Как построены точки прямоугольных треугольников, образующих вершины буквы, хорошо видно на рисунке.
Каковы площадь и периметр синих и зелёних кругов? Полный расчёт – 8 синих очков.
Каковы периметр и площадь треугольника A1F1D1?
Решение расчётным путем - 8 красных очков (Альтернативно конструктивное решение оценивается 4 красными очками.)
hun
https://www.schulmodell.eu/2648-a-h%C3%A9t-feladata.html
frz
«Bonjour grand-père, tu nous as apporté une autre belle lettre», dirent Maria et Bernd. "La construction ne semble pas particulièrement facile", a déclaré Mike. "Vrai!"
On part d'un carré ABCD de côté a (ici a = 10 cm). Les points E, F, G et H sont les milieux des côtés du carré. Les centres sont reliés entre eux et mènent au point I. Les points S et N sont à une distance de a/30 des côtés. Le point J est à une distance de a/30 de I. Le point M est à une distance de a/10 de I. Pour tracer les cercles bleu et vert, il faut construire leurs centres P, Q, U et T, respectivement. Les cercles de centres V et E_1 ont chacun un rayon de a/10. La façon dont les points des triangles rectangles forment les pointes de la lettre sont construites est clairement visible sur le dessin.
Quelle est l’aire et la circonférence des cercles bleu et vert ? Calcul complet - 8 points bleus
Quels sont le périmètre et l'aire du triangle A_1 F_1 D_1 ? Solution par calcul 8 points rouges (Alternativement, une solution constructive recevrait 4 points rouges.)
https://www.schulmodell.eu/2201-probleme-de-maths-de-la-semaine.html
esp
„792. tareas de puntuación
„Hola abuelo, has traído otra letra interesante", dijeron María y Bernd. „Pero la construcción no parece fácil“, comentó Mike. „¡Es cierto!“
Se comienza con un cuadrado ABCD con un lado a (aquí a = 10 cm). Los puntos E, F, G y H son los puntos medios de los lados del cuadrado. Los puntos medios se conectan entre sí y llevan al punto I. Los puntos S y N están a una distancia de a/30 de los lados. El punto J está a una distancia de a/30 de I. El punto M está a una distancia de a/10 de I. Para poder dibujar los círculos azules y verdes, se deben construir sus centros P, Q, U y T. Los círculos con centros V y E_1 tienen cada uno un radio de a/10. Cómo se construyen los puntos de los triángulos rectángulos que forman las puntas de la letra, se puede ver claramente en el dibujo.
¿Cuál es el área y la circunferencia de los círculos azules y verdes? Procedimiento completo - 8 puntos azules.
¿Cuál es el perímetro y el área del triángulo A_1 F_1 D_1? Solución mediante cálculo - 8 puntos rojos (Alternativamente, una solución constructiva se evaluaría con 4 puntos rojos).
https://www.schulmodell.eu/2412-ejercicio-de-matem%C3%A1ticas-semanal.html
en
Dürer letter:
‘Hello Grandad, you've brought us another beautiful letter,’ said Maria and Bernd. ‘But the construction doesn't exactly look easy,’ said Mike. ‘That's right!’
Start with a square ABCD with side length a (here a = 10 cm). The points E, F, G and H are the centres of the sides of the square. The centre points are joined together and lead to point I. Points S and N are at a distance of a/30 from the sides. Point J is at a/30 distance from I. Point M is at a/10 distance from I. To draw the blue and green circles, you have to construct their centres P, Q, U and T respectively. The circles with the centres V and E_1 each have a radius of a/10. The drawing clearly shows how to construct the points of the right-angled triangles that form the vertices of the letter.
What is the area and circumference of the blue and green circles? Complete arithmetic path - 8 blue points
What are the perimeter and area of the triangle A_1 F_1 D_1? Solution by calculation 8 red points (Alternatively, a constructive solution would be awarded 4 red points).
Deadline for solution is the 11th. July 2024.
https://www.schulmodell.eu/1453-this-weeks-maths-problem.html
it
"Ciao Nonno, ci hai portato di nuovo una bella lettera", dissero Maria e Bernd. "La costruzione però non sembra così semplice", osservò Mike. "Giusto!"
Si inizia con un quadrato ABCD con lato a (qui a = 10 cm). I punti E, F, G e H sono i punti medi dei lati del quadrato. I punti medi vengono collegati tra loro e conducono al punto I. I punti S e N hanno una distanza di a/30 dai lati. Il punto J ha una distanza di a/30 da I. Il punto M ha una distanza di a/10 da I. Per poter disegnare i cerchi blu e verdi, bisogna costruire i loro centri P, Q, U e T. I cerchi con i centri V e E_1 hanno ciascuno un raggio di a/10. Come vengono costruiti i punti dei triangoli rettangoli che formano le punte della lettera si può vedere bene nel disegno.
Quali sono l'area e la circonferenza dei cerchi blu e verdi? Procedimento completo - 8 punti blu.
Quali sono la circonferenza e l'area del triangolo A_1 F_1 D_1? Soluzione tramite calcolo 8 punti rossi (In alternativa una soluzione costruttiva verrebbe valutata con 4 punti rossi).
https://www.schulmodell.eu/1984-problema-di-matematica-della-settimana.html
Lösung/solution/soluzione/résultat/Решение:
Musterlösungen von Dietmar Uschner für die Variante 1 --> pdf <-- und Variante 2 (Im Text oben rot) --> pdf <--. Vielen, vielen Dank.
Natürlich reichte eine Variante für die zu erzielende Punktzahl.
Auswertung Serie 66
Gewinner des Buchpreises sind: Paulchen Hunter, Alexander Wolf und Kurt Schmidt, herzlichen Glückunsch.
Teilgenommen haben mehr als 60 Personen - nicht alle lassen ihre Punkte eintragen. (Schade, aber ja, ich akzeptiere dies natürlich.)
Auswertung Serie 66 (rote Liste)
Platz | Name | Ort | Summe | Aufgabe | |||||||||||
781 | 782 | 783 | 784 | 785 | 786 | 787 | 788 | 789 | 790 | 791 | 792 | ||||
1. | Magdalene | Chemnitz | 67 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 7 | 8 | 3 | 8 |
1. | Paulchen Hunter | Heidelberg | 67 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 7 | 8 | 3 | 8 |
1. | Reinhold M. | Leipzig | 67 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 7 | 8 | 3 | 8 |
1. | Alexander Wolf | Aachen | 67 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 7 | 8 | 3 | 8 |
2. | Calvin Crafty | Wallenhorst | 66 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 6 | 8 | 3 | 8 |
2. | algol | Zürich | 66 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 6 | 8 | 3 | 8 |
2. | Dietmar Uschner | Radebeul | 66 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 6 | 8 | 3 | 8 |
2. | Karlludwig | Cottbus | 66 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 6 | 8 | 3 | 8 |
2. | Hirvi | Bremerhaven | 66 | 6 | 5 | 4 | 8 | 6 | 2 | 4 | 5 | 7 | 8 | 3 | 8 |
3. | Hans | Amstetten | 65 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 5 | 8 | 3 | 8 |
3. | Gerhard Palme | Schwabmünchen | 65 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 5 | 8 | 3 | 8 |
3. | Maximilian | Forchheim | 65 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 5 | 8 | 3 | 8 |
4. | Birgit Grimmeisen | Lahntal | 64 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 6 | 8 | 1 | 8 |
4. | HeLoh | Berlin | 64 | 6 | 5 | 3 | 8 | 6 | 2 | 4 | 5 | 6 | 8 | 3 | 8 |
5. | Albert A. | Plauen | 62 | 6 | 5 | 2 | 8 | 6 | 2 | 4 | 5 | 5 | 8 | 3 | 8 |
6. | Frank R. | Leipzig | 60 | 6 | 5 | 4 | 8 | - | 3 | 4 | 5 | 6 | 8 | 3 | 8 |
7. | HIMMELFRAU | Taunusstein | 57 | 6 | 5 | 4 | 8 | 6 | 3 | 2 | 5 | 7 | 8 | 3 | - |
8. | Ekkart Remoli | Leipzig | 56 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 4 | - | 3 | 8 |
8. | Axel Kästner | Chemnitz | 56 | 5 | 5 | 4 | 4 | 3 | 3 | 3 | 5 | 5 | 8 | 3 | 8 |
9. | Kurt Schmidt | Berlin | 46 | - | 5 | - | 2 | 3 | 3 | 4 | 5 | 5 | 8 | 3 | 8 |
10. | Horst Cohen | Hamburg | 40 | - | - | - | 8 | 6 | 3 | 4 | 5 | 6 | 8 | - | - |
11. | Helmut Schneider | Su-Ro | 38 | - | 4 | 4 | 8 | - | - | 3 | 5 | 3 | 8 | 3 | - |
12. | Günter S. | Hennef | 37 | 6 | 5 | 4 | - | 4 | 3 | 2 | 5 | 5 | - | 3 | - |
13. | StefanFinke112 | Wittstock/Dosse | 33 | 6 | 4 | - | 4 | - | 2 | 4 | 5 | 5 | - | 3 | - |
14. | Volker Bertram | Wefensleben | 28 | - | 5 | - | - | 4 | 3 | 4 | 4 | 5 | - | 3 | - |
15. | Siegfried Herrmann | Greiz | 24 | 6 | 5 | - | - | - | 3 | - | 5 | 5 | - | - | - |
16. | Laura Jane Abai | Chemnitz | 22 | 6 | - | - | - | - | 3 | - | 5 | 5 | - | 3 | - |
16. | Janet A. | Chemnitz | 22 | 6 | - | - | - | - | 3 | - | 5 | 5 | - | 3 | - |
17. | Hanspeter Indermaur | Thur (CH) | 20 | - | 5 | - | 8 | - | - | 4 | - | - | - | 3 | - |
18. | Gitta | Großsteinberg | 19 | - | 4 | 4 | - | - | 2 | - | - | 6 | - | 3 | - |
19. | Nazar Cherpak | Mühlheim/Ruhr | 12 | - | - | - | - | - | - | - | - | - | - | 3 | 6 |
20. | Felix Helmert | Chemnitz | 10 | 6 | - | 4 | - | - | - | - | - | - | - | - | - |
21. | W. Gliwa | Magdeburg | 7 | - | - | - | - | - | 2 | - | - | 4 | - | 1 | - |
22. | Marie-Sophie Roß | Chemnitz | 6 | 6 | - | - | - | - | - | - | - | - | - | - | - |
22. | Florine Lorenz | Chemnitz | 6 | 6 | - | - | - | - | - | - | - | - | - | - | - |
22. | Marla Seidel | Chemnitz | 6 | 6 | - | - | - | - | - | - | - | - | - | - | - |
23. | Dana | Ingolstadt | 5 | - | - | - | - | - | - | - | - | 5 | - | - | - |
23. | Jörg G. | Köthen | 5 | - | - | 4 | - | - | - | - | - | - | - | 1 | - |
23. | Hanspeter | Salzburg | 5 | - | - | - | - | - | - | - | 5 | - | - | - | - |
24. | Bernd | Berlin | 4 | - | 4 | - | - | - | - | - | - | - | - | - | - |
25. | Ingmar Rubin | Berlin | 3 | - | - | - | - | - | - | - | - | - | - | 3 | - |
25. | Sara Merlin | ? | 3 | - | - | - | - | - | 3 | - | - | - | - | - | - |
25. | Eleanor Kondla | Ingelheim | 3 | - | - | - | - | - | 3 | - | - | - | - | - | - |
Auswertung Serie 66 (blaue Liste)
Platz | Name | Ort | Summe | Aufgabe | |||||||||||
781 | 782 | 783 | 784 | 785 | 786 | 787 | 788 | 789 | 790 | 791 | 792 | ||||
1. | Albert A. | Plauen | 60 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 3 | 5 | 3 | 8 |
1. | Hans | Amstetten | 60 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 3 | 5 | 3 | 8 |
1. | Magdalene | Chemnitz | 60 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 3 | 5 | 3 | 8 |
1. | Paulchen Hunter | Heidelberg | 60 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 3 | 5 | 3 | 8 |
1. | Calvin Crafty | Wallenhorst | 60 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 3 | 5 | 3 | 8 |
1. | algol | Zürich | 60 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 3 | 5 | 3 | 8 |
1. | Reinhold M. | Leipzig | 60 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 3 | 5 | 3 | 8 |
1. | HeLoh | Berlin | 60 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 3 | 5 | 3 | 8 |
1. | Dietmar Uschner | Radebeul | 60 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 3 | 5 | 3 | 8 |
1. | Birgit Grimmeisen | Lahntal | 60 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 3 | 5 | 3 | 8 |
1. | Gerhard Palme | Schwabmünchen | 60 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 3 | 5 | 3 | 8 |
1. | Karlludwig | Cottbus | 60 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 3 | 5 | 3 | 8 |
1. | Maximilian | Forchheim | 60 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 3 | 5 | 3 | 8 |
1. | Alexander Wolf | Aachen | 60 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 3 | 5 | 3 | 8 |
1. | Hirvi | Bremerhaven | 60 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 3 | 5 | 3 | 8 |
2. | Axel Kästner | Chemnitz | 56 | 5 | 5 | 4 | 8 | 6 | 3 | 3 | 5 | 3 | 5 | 3 | 6 |
3. | Ekkart Remoli | Leipzig | 55 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 3 | - | 3 | 8 |
4. | Frank R. | Leipzig | 53 | 6 | 5 | 4 | 8 | - | 3 | 3 | 5 | 3 | 5 | 3 | 8 |
5. | HIMMELFRAU | Taunusstein | 52 | 6 | 5 | 4 | 8 | 6 | 3 | 4 | 5 | 3 | 5 | 3 | - |
6. | Kurt Schmidt | Berlin | 51 | 5 | 5 | - | 8 | 6 | 3 | 2 | 4 | 3 | 5 | 3 | 7 |
6. | StefanFinke112 | Wittstock/Dosse | 51 | 6 | 5 | - | 8 | 6 | 3 | 4 | 5 | 3 | - | 3 | 8 |
7. | Laura Jane Abai | Chemnitz | 41 | 5 | 5 | - | 4 | 6 | 3 | - | 5 | 3 | - | 3 | 7 |
7. | Janet A. | Chemnitz | 41 | 5 | 5 | - | 4 | 6 | 3 | - | 5 | 3 | - | 3 | 7 |
7. | Günter S. | Hennef | 41 | 6 | 5 | 4 | - | 6 | 3 | 1 | 5 | 3 | 5 | 3 | - |
8. | Helmut Schneider | Su-Ro | 36 | - | 5 | 4 | 8 | - | - | 3 | 5 | 3 | 5 | 3 | - |
9. | Horst Cohen | Hamburg | 34 | - | - | - | 8 | 6 | 3 | 4 | 5 | 3 | 5 | - | - |
10. | Siegfried Herrmann | Greiz | 28 | 5 | 5 | - | 8 | 4 | 3 | - | - | 3 | - | - | - |
11. | Volker Bertram | Wefensleben | 17 | - | - | - | - | 4 | 3 | 4 | - | 3 | - | 3 | - |
12. | Gitta | Großsteinberg | 16 | - | 3 | 4 | - | - | 3 | - | - | 3 | - | 3 | - |
13. | Hanspeter Indermaur | Thur (CH) | 15 | - | - | - | 8 | - | - | 4 | - | - | - | 3 | - |
14. | Bernd | Berlin | 13 | - | 5 | - | 8 | - | - | - | - | - | - | - | - |
14. | W. Gliwa | Magdeburg | 13 | - | - | 4 | - | - | 3 | - | - | 3 | - | 3 | - |
15. | Nazar Cherpak | Mühlheim/Ruhr | 11 | - | - | - | - | - | - | - | - | - | - | 3 | 8 |
16. | Jörg G. | Köthen | 10 | - | - | 4 | - | - | 3 | - | - | - | - | 3 | - |
16. | Felix Helmert | Chemnitz | 10 | 6 | - | 4 | - | - | - | - | - | - | - | - | - |
17. | Marie-Sophie Roß | Chemnitz | 6 | 6 | - | - | - | - | - | - | - | - | - | - | - |
17. | Marla Seidel | Chemnitz | 6 | 6 | - | - | - | - | - | - | - | - | - | - | - |
17. | Florine Lorenz | Chemnitz | 6 | 6 | - | - | - | - | - | - | - | - | - | - | - |
18. | Hanspeter | Salzburg | 5 | - | - | - | - | - | - | - | 5 | - | - | - | - |
19. | Dana | Ingolstadt | 3 | - | - | - | - | - | - | - | - | 3 | - | - | - |
19. | Frank Römer | Frankenberg | 3 | - | - | - | - | - | - | - | - | - | - | 3 | - |
19. | Sara Merlin | ? | 3 | - | - | - | - | - | 3 | - | - | - | - | - | - |
19. | Eleanor Kondla | Ingelheim | 3 | - | - | - | - | - | 3 | - | - | - | - | - | - |
19. | Ingmar Rubin | Berlin | 3 | - | - | - | - | - | - | - | - | - | - | 3 | - |