Serie 66
Beitragsseiten
Aufgabe 5
785. Wertungsaufgabe
deu
„Das sieht aber gut aus.“, sagte Bernd zu seiner Schwester. „Ja, das gefällt mir auch. Ich habe ein kleines gleichseitiges Dreieck ABC (a = 1 cm) gezeichnet. Dann habe ich überlegt, welche gleichgroßen, regelmäßigen n-Ecke das Dreieck vollständig umschließen können, so dass die n-Ecke (rot) sich an jeweils einer Kante berühren. So habe ich dann die drei Zwölfecke konstruiert.“ „Toll.“
Wie groß ist der Umfang des 27-Ecks? 2 blaue Punkte. Wie groß ist der Flächeninhalt der Figur? 4 blaue Punkte
Welche regelmäßigen n-Ecke gibt es noch, die sich durch einen „Ring“ von regelmäßigen n-Ecken - wie bei der blauen Aufgabe - umschließen lassen? 6 rote Punkte.
https://www.schulmodell.eu/aufgabe-der-woche.html
Termin der Abgabe 02.05.2024. La limtago por sendi viajn solvojn estas la 2-a de majo 2024. Срок сдачи 02.05.2024. Ultimo termine di scadenza per l´invio è il 02.05.2024. Deadline for solution is the 2th. May 2024. Date limite pour la solution 02.05.2024. Las soluciones deben ser enviadas hasta el 02.05.2024. Beadási határidő 2024.05.02. 截止日期: 2024.05.02 – 请用徳语或英语回答 Διορία παράδοσης λύσης 02/05/2024. Παρακαλείστε να υποβάλετε τις λύσεις στα αγγλικά ή στα γερμανικά.
الموعد النهائي للتسليم هو 02/05/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرن
esperanto:
„Tio bele aspektas.“, diris Bernd al sia fratino. „Jes, ankaŭ al mi tio plaĉas. Mi pentris malgrandan egallateran triangulon ABC (a = 1 cm). Poste mi pripensis, kiuj samgrandaj regulaj n-lateroj povus esti ĉirkaŭ la triangulo tiel ke la n-lateroj (ruĝaj) tuŝas unu la alian je komuna latero. Tiel mi konstruis la tri 12-laterojn.“
Kiom longa estas la rando de la 27-latero? 2 bluaj poentoj. Kiom granda estas la areo de la figuro? 4 bluaj poentoj
Kiuj regulaj n-lateroj ankaŭ ekzistas, kiujn oni povas ĉirkaŭi per ringo de regulaj n-lateroj — simile al la supra tasko? 6 ruĝaj poentoj.
La limtago por sendi viajn solvojn estas la 2-a de majo 2024. La solvojn skribu prefere en la germana, angla aŭ franca.
https://www.schulmodell.eu/3155-tasko-de-la-semajno-aufgabe-esperanto.html
arabisch-التمرين الإسبوعي:
قال بيرند لأخته : " يبدو ذلك جيدًا جدًا"
"نعم، إنه يعجبني أيضاً. لقد رسمت مثلثاً متساوي الأضلاع صغيراً ABC (a=1cm) ، ثم حاولت البحث عن شكل هندسي منتظم يكون جميع أضلاعه ذات طول متساوٍ وجميع زواياه ذات قياس واحد، بحيث يحيط هذا الشكل الهندسي بالمثلث من جميع أضلاعه بشكل كامل.
لذلك قمت برسم ثلاثة مضلعات (كل مضلع هو مضلع اثني عشر ضلعاً منتظماً ). كل مضلع له اثنا عشر ضلعاً واثنتا عشرة زاوية."
ما هو محيط الشكل الهندسي المُكون من 27 ضلعاً ؟ 2 نقطة زرقاء.
ما هي مساحة الشكل الهندسي المُكون من 27 ضلعاً ؟ 4 نقاط زرقاء.
ما هو الشكل الهندسي المنتظم الذي تكون جميع أضلاعه متساوية الطول، وجميع زواياه ذات قياس واحد، والذي يحقق الخاصية التالية:
إذا رُسم في المركز، فإنه يمكن رسم عند كل ضلع من أضلاعه أشكال هندسية مشابه له بحيث تحيط به (الشكل المركزي) بشكل كامل؟ 6 نقاط حمراء.
الموعد النهائي للتسليم هو /02/05/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.
https://www.schulmodell.eu/3150-arabisch-التمرين-الإسبوعي.html
griechisch:
"Αυτό φαίνεται καλό", είπε ο Bernd στην αδελφή του. "Ναι, κι εμένα μου αρέσει. Σχεδίασα ένα μικρό ισόπλευρο τρίγωνο ABC (α = 1 cm). Στη συνέχεια σκέφτηκα ποιες κανονικές n κορυφές του ίδιου μεγέθους θα μπορούσαν να περικλείουν πλήρως το τρίγωνο έτσι ώστε οι n κορυφές (κόκκινες) να αγγίζουν η καθεμία από μία ακμή. Έτσι κατασκεύασα τα τρία δωδεκάγωνα". Υπέροχα."
Ποια είναι η περίμετρος της γωνίας 27; 2 μπλε κουκκίδες. Ποιο είναι το εμβαδόν του σχήματος; 4 μπλε κουκκίδες.
Ποιες άλλες κανονικές n-γωνίες υπάρχουν που μπορούν να περικλείονται από έναν "δακτύλιο" κανονικών n-γωνιών - όπως στην άσκηση με μπλε χρώμα; 6 κόκκινες κουκκίδες.
https://www.schulmodell.eu/3126-wochenaufgabe-griechisch.html
chin
第785题
"这个看起来不错。" 伯恩德对他的妹妹说道。
“是的,我也很喜欢。我先画了一个小的等边三角形ABC,其中边a = 1厘米。然后我考虑用大小相同的正n边形把这个三角形圈起来,而且红色的正n边形之间要互相接触。按照这个规则我构建了三个十二边形。”
“真是太棒了!”
这个27边形的周长是多少? 2个蓝点
这个图形的面积是多少? 4个蓝点
还有哪些正n边形,可以通过“环”的形式被一圈儿正n边形包围起来? 就像蓝色问题中那样。 6个红点。
截止日期: 2024.05.02. – 请用徳语或英语回答
https://www.schulmodell.eu/2952-woch-chin.html
rus
«Выглядит неплохо», — сказал Бернд сестре. «Да, мне это тоже нравится. Я нарисовала маленький равносторонний треугольник АВС (а = 1 см). Затем я задумалась о том, какие правильные n-угольники одинакового размера могли бы полностью окружить треугольник так, чтобы n-угольники (красные) касались друг друга на одном ребре. Итак, я построила три двенадцатиугольника.» «Замечательно.»
Каков периметр 27-угольника? 2 синих очка. Какова площадь фигуры c тремя двенадцатиугольниками и треугольником? 4 синих очка
Какие существуют правильные n-угольники, которые можно окружить «кольцом» из правильных n-угольников, как в синей задаче? 6 красных очков.
hun
"Ez jól néz ki" – mondta Bernd a nővérének. "Igen, ez nekem is tetszik. Rajzoltam egy kis egyenlő oldalú háromszöget ABC (a = 1 cm). Aztán arra gondoltam, hogy az azonos méretű szabályos n-szögek teljesen körülzárhatják a háromszöget úgy, hogy az n-szögek (piros) egy-egy szélén érintkezzenek egymással. Így szerkesztettem meg a három dodekagont." Nagyszerű."
Mi a kerülete a 27 szögnek? 2 kék pont. Mi az ábra területe? 4 kék pont
Milyen más szabályos n-szögek vannak, amelyeket szabályos n-szögek "gyűrűjével" lehet körülzárni - mint a kék feladatban? 6 piros pont.
https://www.schulmodell.eu/2648-a-h%C3%A9t-feladata.html
frz
«Ça a l'air bien», dit Bernd à sa sœur. «Oui, j'aime ça aussi. J'ai dessiné un petit triangle équilatéral ABC (a = 1 cm). Ensuite, j'ai réfléchi aux n coins réguliers de même taille qui pourraient entourer complètement le triangle de sorte que les n coins (rouges) se touchent sur un bord. J'ai donc construit les trois dodécagones "Super".
Quelle est la circonférence de la figure de 27-coins ? 2 points bleus. Quelle est la superficie de la figure ? 4 points bleus
Quels n-coins réguliers existe-t-il qui peuvent être entourés d'un « anneau » de n-coins réguliers - comme dans le problème bleu ? 6 points rouges.
https://www.schulmodell.eu/2201-probleme-de-maths-de-la-semaine.html
esp
"Esto se ve muy bien", dijo Bernd a su hermana. "Sí, también me gusta. He dibujado un pequeño triángulo equilátero ABC (a = 1 cm). Luego pensé en qué polígonos regulares del mismo tamaño podrían rodear completamente el triángulo, de modo que los vértices (rojos) toquen un lado cada uno. Así que construí los tres dodecágonos." Genial."
¿Cuál es el tamaño del perímetro del 27ésimo número? 2 puntos azules. ¿Cuál es el área de la figura? 4 puntos azules.
¿Qué otros polígonos regulares de n lados encuentras que pueden ser rodeados por un "anillo" de polígonos similares, como en el ejercicio azul? 6 puntos rojos.
https://www.schulmodell.eu/2412-ejercicio-de-matem%C3%A1ticas-semanal.html
en
"That looks good," Bernd told his sister. "Yes, I like that too. I drew a small equilateral triangle ABC (a = 1 cm). Then I thought about which regular n vertices of the same size could completely enclose the triangle so that the n vertices (red) each touch on one edge. That's how I constructed the three dodecagons." Great."
What is the perimeter of the 27-corner? 2 blue points. What is the area of the figure? 4 blue points
What other regular n-corners are there that can be enclosed by a "ring" of regular n-corners - as in the blue exercise? 6 red points.
Deadline for solution is the 2nd. May 2024.
https://www.schulmodell.eu/1453-this-weeks-maths-problem.html
it
“Sempre più bello!” disse Bernd a sua sorella. “Sì, anche a me piace. Ho disegnato un piccolo triangolo equilatero ABC (a = 1 cm). Poi ho pensato a quali poligoni regolari dello stesso lato n potrebbero avvolgere completamente il triangolo, in modo che i vertici n (rossi) tocchino ciascuno un lato. Così ho costruito i tre dodecagoni.” “Fantastico.” Qual è la lunghezza del perimetro del 27-agono? 2 punti blu. Qual è l'area della figura? 4 punti blu.
Quali altri poligoni regolari possono essere circondati da un "anello" di poligoni regolari, come nell'esercizio blu? 6 punti rossi.
https://www.schulmodell.eu/1984-problema-di-matematica-della-settimana.html
Lösung/solution/soluzione/résultat/Решение:
Die Antwort bei rot zeigt, dass es nur wenige n-Ecke gibt, die einen "Ring" haben. Die Möglichkeiten für einen Ring für die regelmäßigen Dreiecke und die Quadrate sind "sehr groß", da in der Aufgabenstellung nicht verlangt wird, dass die Elemente des Rings die gleiche Kantenlänge haben müssen, wie das zu umschließende n-Eck.
Musterlösung von D. Uschner, danke --> pdf <--